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1. Introduction/Executive Summary

1.1 Organizing Questions

One of the better ways to characterize an uncertainty is to reduce it to an observable variability among putatively analogous cases with better information.  For example, in physiologically-base-pharmacokinetic modeling, if there are no directly measured tissue/blood partition coefficients for a particular chemical, model-based predictions can often be made using the chemical’s octanol/water partition coefficient and a relationship between this parameter and the desired tissue/blood partition coefficients derived from other chemicals (Poulin and Thiel 2000; Poulin and Krishnan 1996; Ginsberg et al. 1996; Paterson and Mackay, 1989). Uncertainty in those predictions can then be characterized using the performance of the model in predicting the partition coefficients for chemicals excluded from the set used to derive the parameters of the prediction equations

The project reported here applies this basic approach to shed light on an important type of problem currently faced by EPA risk analysts—the need to make interspecies projections and understand the likely interindividual variability of metabolism parameters needed for use in plysiologically-based pharmacokinetic models.  Often the data available to estimate the key metabolic parameters in such models are derived from in vitro measurements of enzyme activities in tissues, tissue fractions, or short term tissue cultures (e.g. hepatocyte cultures) from experimental animals.  In using such information for probabilistic analyses, EPA analysts must confront questions such as:

· What is/are the central-estimate projection rule(s) for translating different kinds of enzyme activity measurements from experimental animals into human equivalents? 

· How should the uncertainty in such interspecies projections be quantitatively characterized?  That is, for the array of chemicals for which comparable measurements have been made in animal and human tissues, how often have animal/human activity ratios been seen to be different by various amounts from the central tendency projection rule(s)? 

· How should the likely human interindividual variability in such activities be quantitatively characterized?  How often are such distributions best characterized by simple unimodal lognormal distributions, and how often do mixtures of one or more component distributions seem to be needed to describe available data (e.g. for activities substantially affected by known polymorphisms).  In both cases, what is the observed extent of variation for the chemicals that have been studied?  Ideally this should be characterized by distributional statistics (e.g., the standard deviation of the logarithms of the activity observations in the case of distributions that are approximately lognormal; or the ratios of selected percentiles of the population distribution to median values for more complex distributions).

1.2 Approach

We therefore report here efforts to create and analyze two databases to aid pharmacokinetic modeling efforts for chemicals where there are no direct measurements of specific enzyme activities for particular chemicals.  The first of these is a database of interspecies comparisons of specific enzyme activities; the second assesses interindividual variability among humans.  The second addresses interindividual variability among humans.  Each database is analyzed to detect any patterns that may be present for a series of independent variables.  These include different types of enzymes (e.g. specific CYPs vs. glutathione transferase, etc.), different enzyme parameters (i.e. the estimated Michaelis-Menten parameters Vmax, Km, and Vmax/Km ratio, vs. more direct observations of activity at specific substrate concentrations) and different publication years (reflecting the possibility that more recent studies may have tended to use improved tissue processing and measurement methods).

The two major sections below discuss the interspecies and human interindividual variability databases in turn.  Each section is accompanied by appendices in Microsoft Excel that contain the assembled data and results of supporting analyses.

1.3 Results from Assembly and Analysis of the Interspecies Database

The interspecies database consists of 869 sets of observations (individual measurements of a specific enzyme parameter* for a particular substrate in one species) in 269 “data groups” (parallel measurements of the same enzyme activity for the same chemical in the same type of tissue preparation in different species) drawn from 62 different papers.  We analyzed this database to reveal different patterns of change of specific enzyme parameters with body weight (overall allometric relationships) and departures from those allometric relationships that are specific to particular species.  

With the aid of inverse-variance weighted regression analyses we compared our allometric regression results with a standard set of assumptions used by many PBPK modelers in the past.  These assumptions are 

(1) Overall Vmax (and by extension Vmax/Km intrinsic clearance values) in the liver should scale with metabolic rates—approximately (body weight)0.75.  Given the trend toward smaller liver weight/body weight ratios in larger animals (allometric exponent approximately 0.15), this implies an expectation for an allometric relationship for liver enzyme Vmax, Vmax/Km, and activities measured at particular substrate concentrations of about (body weight)-0.1.  

(2) Because there is no obvious reason to assume that enzyme-substrate binding in larger animals is systematically tighter than in smaller animals, central estimates of Km values in larger species are assumed to be the same as measured in smaller species.

Taking the second point first, our data suggest that Km values in for different enzymes vary systematically between larger and smaller species more often than would be expected by chance; although the statistically significant departures are in both directions—indicating either stronger or weaker substrate binding in people relative to animals for specific enzymes.  This means that interspecies allometric exponents for Vmax (which primarily determines species differences in metabolism rates at the limit of high internal concentrations), are often different than the corresponding allometric exponents for Vmax/Km ratios (which determines species differences in metabolism rates at the limit of low internal concentrations many times less than Km).  

On the first point, we find many, but far from all types of enzymes have allometric exponents that are within expected statistical error of the expected (body weight)-0.1 relationship.  These include most CYP enzymes in the liver measured per unit microsomal protein, esterases, glutathione-S-transferases (per unit cytosol protein) and alcohol dehydrogenase activities,  On the other hand, some enzymes with prominent roles in detoxification—including glucuronosyl transferases and epoxide hydrolases—have central estimates for allometric estimates that are positive, rather than negative.  

In addition to the overall interspecies allometric relationships, our regression analyses reveal appreciable species-specific variation.  Regressions that include species-specific dummy variables appear to provide better descriptions of the data, even after adjustment for increases in the numbers of independent variables compared to the simpler allometric exponent regressions.  Plots of overall data suggest that particular species may often differ from overall allometric regression relationships in characteristic ways (e.g. hamsters and monkeys with greater and dogs with lesser activity than might ordinarily be expected from the simple allometric fits). The species-specific log(animal/human) regression values we have derived, and other raw information from our database, can help investigators utilize species-specific in vitro measurements of enzyme parameters to arrive at central estimates and uncertainty distributions for the corresponding human enzyme parameters.

A final subsection of the interspecies analysis provides four different approaches to understanding  and quantifying the effects of several sources of uncertainty in using the regression results to make predictions of human enzyme parameter values for input into PBPK models.  From simplest to most complex, the four involve 

(1) simple observations of the statistically weighted “Root Mean Square” (RMS) (analogous to standard deviations) departures of the fitted data points from the expectations of the regression equations; 

(2) unweighted RMS errors either for individual data points or combined into chemical-by-chemical aggregates, 

(3) unweighted RMS errors derived from a cross-validation analysis in which each human data point is excluded in turn from the analysis used to derive the regression estimates, and then compared with predictions made from the modified regression estimates, and

(4) estimates that could be done using the expansion of uncertainties resulting from randome errors to account for past exerience with systematic errors in measurements as proposed by Shlyakhter (1994). 1.4 Results from Assembly and Analysis of the Interindividual Variability Database

This latter type of analysis is only suggested as one possibility, not illustrated with real results.  However it is noted that the database assembled here could lay the groundwork for such an analysis in the future.  Each of the four approaches listed above involve progressively greater effort and tend to reveal progressively greater uncertainties.  Such uncertainties can be the basis for “value of information” analyses  to evaluate the likely benefits for decision-making of specific efforts to make better measurements or otherwise gather improved information.

The interindividual variability database contains 122 data-points for the in vitro pharmacokinetic parameters Activity at specific substrate concentrations, Km, Vmax and Vmax/Km ratio for both the Phase I and Phase II enzymes.  The Log (GSD) was used as the summary statistic to quantify interindividual variability from the specific datasets.  Measures of interindividual variability were broken down by the Phase I vs. Phase II enzyme, with the Phase I enzymes found to have some tendency to be more variable.   Central estimates of measures of human variability for a variety of enzymes groups (particularly some CYP and Glutathione-S-transferase enzymes), when translated to the 95/50th percentile ratio, often exceed the factor of “3” allocated by IPCS for the pharmacokinetic uncertainty factor.  (However it should be stressed that the in vitro Log(GSD)s reported here are not directly interpretable as final measures of the interindividual pharmacokinetic variability that would be seen in vivo; estimates of in vivo variability from these inputs require processing via PBPK models before they can be used to assess data-derived uncertainty factors according to the IPCS recommendations.)  Measures based on Vmax/Km ratio were found to be more variable than Activity at specific substrate concentrations, but were not as variable as might be expected from the variability in the underlying Vmax and Km parameters considered separately.  This may have resulted in part from potentially correlated estimation errors introduced by the statistical methods used to determine the values of both parameters from the same data, or from the fact that data points at relatively low substrate concentrations provide more information about Vmax/Km ratios than the absolute value of Km itself. 

In additional analyses, study year, storage condition of the liver tissue, and source of liver tissue were not found to be statistically significant predictors of the measure of inter-individual variability.

References Cited in Section 1

Ginsberg GL, Pepelko WE, Goble RL, Hattis DB. 1996. Comparison of contact site cancer potency across dose routes:  case study with epichlorohydrin. Risk Analysis 16: 667-681.

Paterson S, Mackay D. 1989. Correlation of tissue, blood, and air partition coefficients of volatile organic chemicals. British Journal of Industrial Mediciine 46: 321-328.

Poulin P, Krishnan K. 1996. A mechanistic algorithm for predicting blood:air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin.  Toxicol Appl Pharmacol 136: 131-137.

Poulin P, Theil FP. 2000.  A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically based pharmacokinetic models in drug discovery. J Pharm Sci 89: 16-35.

2. Interspecies Comparative Database of Enzyme Activities

This section has three parts.  The first provides an overview of the interspecies database of in vitro measurements of enzyme activities.  We describe the numbers of observations we have for various types of data, including enzyme types, activity parameter (e.g., Vmax, Km, Vmax/Km ratio,* or a simple observation of an enzyme reaction rate at a particular substrate concentration), species, tissue of origin, type of tissue preparation (e.g. microsomes vs. cytosol vs. whole cells), and the normalizing units used for expressing enzyme activities.  

The second part describes the statistical challenges we needed to overcome to prepare the data for comparative analysis.  One type of challenge arose from the customs of the experimenters in reporting their data.  Even though enzyme activities from individuals tend to be better described by lognormal rather than normal distributions (see Section 3), nearly all the measurements from animals were provided by the source papers in the form of arithmetic means (sometimes, but not always, with standard deviations or standard errors) of measurements of preparations from individual animals or preparations from organs pooled from several animals.  For humans, by contrast, some of the better papers provided data for individuals from which we could directly calculate lognormal statistics (geometric means, means of the logarithms** of the enzyme parameters, and log standard deviations and standard errors). 

In order to provide a basis for apples-to-apples comparisons across species we have concluded that it is it best to estimate lognormal statistics for describing the data for observations in all species and for all enzyme parameters.  One reason for this is that a key type of enzyme parameter we wish to study is a ratio—Vmax/Km.   Additionally, we wish to analyze the enzyme data from individual species vs. humans in ratio form.  Unfortunately it is not accurate to simply calculate the means and standard deviations of such ratios of lognormally distributed measurements directly from separately reported arithmetic mean Vmax and arithmetic mean Km observations.  In early analyses we also found that if we were to use arithmetic statistics to model the variability and uncertainty in Vmax/Km ratios, we would often encounter serious instabilities in our estimates related to even a small chance that Km (in the denominator of Vmax/Km ratios) could take on values very close to zero.  

Fortunately there are formulae for estimating lognormal geometric means and geometric standard deviations and standard errors from ordinary arithmetic means and standard deviations.  Where individual Vmax/Km observations were not provided directly, therefore, we calculated geometric means for this parameter from the separately estimated geometric means for Vmax and Km. This calculation, and the weighting of the data points for regression analyses, requires estimates of the uncertainty in each parameter.  Because standard deviations (or standard errors) and sometimes the number of measurements made were not provided by all the source papers, we sometimes needed to impute values for these quantities from other information.  The second part therefore describes our procedures for doing these imputations, and the numbers of cases where various types of imputation were needed.

Finally, the third part of this section describes our regression analysis procedures and results.  We report two types of regressions.  The first type assesses means and uncertainties for the allometric exponent—the power of body weight that best describes the multiplicative differences among all tested species in enzyme parameter values in relation to body weight.* The second type focuses on the logarithms of the ratios of enzyme activities in individual test species (e.g., rats, mice, dogs) relative to the same activities in humans.  Briefly, we find that the species specific ratio analyses capture idiosyncratic variations that are not completely described by the overall allometric exponent regression results.  

In this third section, both types of results are compared with expectations under what has become a standard theory for interspecies projection among pharmacokinetic modelers. Metabolic rates, basal oxygen consumption and ventilation rates scale with approximately the 3/4th power of body weight (Adolph, 1949; Ad hoc Working Group on Risk Assessment, 1992; Boxenbaum 1982).  Correspondingly, elimination rates of drugs tend to scale with body weight as if their enzyme processing rates scaled similarly (Boxenbaum 1982; Reese and Hattis 1994)—leading to expectations, for example, that internal body half-lives (and therefore internal concentration X time per unit external dose/body weight) should scale approximately with (body weight)-0.25 (Travis and White, 1990).  Because there is no obvious reason to assume that enzyme affinities for substrates (and therefore Km) should be systematically different with body weight, it has been standard to assume that Km values derived from animal data should be applied without change to humans, but that whole-body Vmax (and for low doses, Vmax/Km ratios) should be assumed to vary approximately in proportion to (body weight)0.75.  Analyses of the in vitro observations assembled in our database suggest that, even after adjustments for varying ratios of liver weight per body weight across species (Figure 2.1), there are important departures from these assumptions for many individual enzyme types and for the aggregate of all enzymes we have studied.  

2.1 Overview  of the Interspecies Database—Description of the Fields in Appendix 2A

Basic search and screening techniques were detailed in our Task 2 report.  Briefly, we assembled papers from the scientific literature that contained in vitro measurements of enzyme activity in more than one mammalian species—nearly always including humans.  Some references were derived from an earlier database assembly effort (Hattis et al. 1994; Rees and Hattis 1994; Hattis et al. 1994) but most were derived from new searches for this project using search terms such as “Vmax” and “Human”.  All of the references cited in the older database were reexamined, and data were re-extracted and reanalyzed.

Overall the current database consists of 869 sets of observations (individual measurements of a specific enzyme activity for a particular substrate in one species) in 269 “data groups” (parallel measurements of the same enzyme activity for the same chemical in the same type of tissue preparation in different species) drawn from 62 different papers.  103 different chemical substrates are represented (Table 2.1).

Tables 2.2 through 2.7 show breakdowns of the database by type of tissue preparation (62% of the records are from microsomes), tissue of origin (about 73% from liver), enzyme type (about 45% CYP or P450 enzymes), species (about a third each from humans and rats; 14% from mice), type of normalizing units used for expressing activity, and publication year.  It can be seen in Table 2.7 that earlier (pre-1987) papers tended to express results primarily in terms of simple activity observed at a specific substrate concentration, while more recent papers increasingly used their underlying data to derive estimates of the Michaelis-Menten (Vmax, Km, Vmax/Km) parameters.

The raw data extracted from the source papers, and the calculations made to produce the initial inputs for our analysis are provided in the Excel file titled “App 2A—Interspecies Data.xls”.  In the summary worksheet of this workbook, lines 2-870 provide an overview of the assembled data.  Detailed analyses leading to this summary are provided in individual worksheets filed by the first author’s last name and the year of publication (full bibliographic references are also provided in the individual worksheets for each paper).  The columns of the summary sheet are:

A—“System type”—This is type of tissue preparation.  Table 2.2 gives a breakdown by this field. 

B—“Cell type”—This is the tissue of origin, as detailed in Table 2.3.

C—“Enzyme Parameter”—the distinction among Vmax, Km, Vmax/Km, or overall activity (at some selected substrate concentration). 

D—“Enzyme/Isozyme”—classified either by the authors of the source paper, or from information in more general sources as detailed in Section 3 below

E—“Chemical” is the substrate used for the enzyme assays. 

F—“Units”—these depend on the parameter measured—generally some amount of metabolism per time per amount of protein for the Vmax measurements, a substrate concentration per Km, and some volume cleared per time per unit of protein for the Vmax/Km ratios.  

G—“Species”—Only measurements in mammalian species are recorded.  

H and I provide a description of the human sample collection procedures, where available.  We have not been as successful as we had hoped in finding data to provide a basis for judgments of the potential for significant postmortem changes.  Further evaluation of this issue is provided in the interindividual variability analysis (Section 3).

J--the body weight of the animals tested or, in the absence of specific documentation, generic assumptions of species body weights taken from an older publication by the National Institute for Occupational Safety and Health (Table 2.8).

K—This is just the number of subjects tested, or in some cases the number of replications reported by the author for the enzyme assay standard deviation or standard error.

L—“Type of Analysis” indicates how the authors of the source article determined their Vmax and Km values—usually either by a graphical analysis or a more sophisticated statistical optimization via a program.

M—“Arith Mean” is the arithmetic mean of the measurements of enzyme activity (or other parameter) provided

N—“Arith Std Error” is the standard error of the mean—generally the standard deviation divided by the square root of the number of subjects studied independently (with separate measurements) or the number of experiments whose results were averaged to arrive at the mean.

O, P, and Q—These are the mean log of the enzyme parameter value, the standard deviation of the log, and the standard error of the log enzyme parameter value in cases where individual data are provided by the source paper.  These data are used later in the analysis to test our formulae for estimating means and standard deviations of log values in the bulk of cases where only arithmetic summary statistics are provided in the source papers.

R and S—“Human Mouse Ratio” is just the ratio of the mean observed arithmetic mean values of the parameter for mice to that for people, and “Human Rat Ratio” is similar.  Because they are based on reported arithmetic means rather than the preferred geometric means, these values are not used in our subsequent analyses.

T and U—“Allom. Expon.” Is the allometric exponent, calculated as the slope of a regression line of the log of the mean enzyme activity vs. the log of the body weights:

Log(Parameter ) = b + m*Log(Body weight.  In this equation “m” is the allometric exponent.

As for columns R and S, these values are not used in our subsequent analyses because they are based on the reported means of the parameters in each species rather than the preferred geometric means.

V—“Data Acquisition” records whether we were able to obtain precise numbers from a table or text in the source reference or rather whether we needed to read more approximate numbers off a graph.

W—“Ref Year” the year of publication of the source reference.  

V—“Reference”—this field is a key to finding the raw data extraction records in other worksheets in the overall Excel workbook.  Each source paper has its own worksheet. 

2.2 Challenges in Preparing the Data for Analysis

2.2.1 Defining Comparable Parameters for the Ultimate Regression Analysis, in the Light of the Lognormal Distributions of Underlying Data

2.2.1.1  Estimating Geometric Means from Arithmetic Means and Standard Deviations

As discussed in the introduction to this section, we decided that apples-to-apples comparisons of ratios of Vmax/Km, and the various enzyme parameters for different species are best done in the form of lognormal statistics—means and standard deviations and standard errors of the component values.   As it happens, for lognormally distributed data, a geometric mean is generally smaller than an arithmetic means, by an amount that depends on the variability of the data.  Finney (1941) gives the general formula in terms of the arithmetic coefficient of variation (CV)—the ratio of the arithmetic standard deviation to the arithmetic mean: 


[image: image2.wmf]
This formula is derived from an assumption that the underlying data are in fact lognormal.  Therefore we tested the accuracy of the formula as applied our data by isolating the 81 human data records where we had complete information for the values of our enzyme parameters observed in individual subjects.  Overall, we found no detectable systematic bias in the predictions of this formula for log(geometric) mean vs. the values that we directly calculated from the individual data points:

	Mean [Observed mean Log(Geometric Mean) – 
CV formula-derived expected Log(geometric mean)]
	0.0016

	Standard Deviation of the Observed – Expected Log(geometric mean)
	0.0226

	Number of Data Sets
	81

	Standard Error of the Observed – Expected Log(geometric mean)
	0.0025


It is also helpful for the comparability of different data that the estimation formulae we use have little or no systematic bias with the numbers of subjects or overall variability over the range of these parameters seen in our data. Figures 2.2 and 2.3 explore the possibility of biases in the predictions of Log(geometric mean) with larger vs. smaller values of N and CV respectively.  Figure 2.2 suggests a slight tendency for a correlation with N, and this appears to be statistically significant at P < 0.05, although undoubtedly this is heavily influenced by the one point at the relatively high N of 19.  No tendency for a significant bias in the predictions vs. the observations with CV is apparent in Figure 2.3.  We have elected to use the Finney (1941) without modification for the estimation of Log(Geometric Means) of the enzyme parameter data.

2.2.1.2 Estimating Geometric Standard Deviations for Lognormally Distributed Data from Arithmetic Coefficients of Variation and the Numbers of Observations

In order to appropriately weight the enzyme activity observations from different data sets relative to one another in our regression analyses, we also need to make estimates of the standard deviations and standard errors of the mean Log(enzyme parameter) observations.  Aitchison and Brown (1957) and Finney (1941) also provide a formula to do this from arithmetic coefficient of variation information:
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Unfortunately, the authors report that this is an asymptotic solution that is correct for large sample sizes, but has some systematic biases when applied to data sets with smaller N’s.  When applied to our 81 human observations for which we have complete individual data, we find that there is not much distortion with N for relatively small sample sizes (Figure 2.4) in our data (although there is a small overall tendency for the formula to underpredict the Log(GSD), as indicated by the positive intercept in the regression line in figure 2.4.  Some systematic distortion does appear when we plot the observed – formula-predicted Log(GSD) values vs. the coefficient of variation (Figure 2.5).  

In the light of these results, and the previously-known tendency for the asymptotic Aitchison and Brown) 1957 formula to underestimate variability for small sample sizes, we elected to define a new empirical formula for estimation of Log(GSD) from CV:


[image: image4.wmf]
It can be seen in Figures 2.6 and 2.7 that, as applied to our data, this equation makes predictions that appear to have no appreciable systematic biases correlated with either both N or CV.   It also has no appreciable overall aggregate bias relative to the data:

	
	Difference of observed (directly calculated) Log(GSD) - formula-predicted Log(GSD) using equation 2.3

	Mean
	-0.0071

	stdev
	0.0531

	N
	83*

	stderr
	0.0058


To facilitate sensitivity analyses for our regression results, our final data base for regression analysis includes calculations of Log(GSD) for individual records based on this formula, the original Aitchison and Brown formula, and a third approach incorporating N/N-1 modification of the CV into the traditional Aitchison and Brown equation.  Because these calculations are primarily used in weighting the different data points in the regression analyses, our experience to date is that differences among them tend to produce only modest differences in the final regression estimates.

2.2.2 Imputation Procedures to Address Cases of Incomplete Data

The data base assembled for our interspecies analysis includes 217 records based on only a single animal or a single measurement from pooled tissue preparations from an unknown number of animals.  Additionally there are 118 observations of mean results from sources where it is clear from the source that there were multiple measurements, but where no information on variation (standard deviation or standard error) was provided.  These incomplete-information categories therefore represent substantial, although not majority types in our database of 869 records of species X enzyme type measurements.  The records in each of these categories are identified in the first two worksheets in the Excel file titled “App2B—Intspe Imputation An.xls”.

We therefore faced a choice of two possible responses to the fact that not all source papers provided all of these types of data necessary for in our analyses.  Data sets with missing information could be excluded; or we could make our best efforts to fill in (“impute”) the missing data based on information derived from other records in the data base.  In order to avoid potential biases that might be introduced by data exclusions, we elected to fill in the missing information using a number of imputation procedures—taking care, where possible, to recognize the greater uncertainty in the imputed data points by procedures that provided larger estimates of uncertainty (and therefore lower statistical weights) for the imputed information.

2.2.2.1 Cases Where N is Missing

In cases where N is not given and, in addition, no standard deviation or standard error is reported in the source paper, we choose to impute an N of 1.  In this type case we impute a value for the uncertainty that corresponds to the lognormal variability observed for similar types of observations (see regression analysis results in the next subsection).  

In cases where N is not given, but the source paper does report a standard deviation or a standard error, we conclude that there must have been at least 2 replications.  Therefore we impute a value for N of 2.  

For both of these cases there is a possibility that the actual N’s were larger than 1 or 2, respectively.  Imputing the lowest possible values has the effect of overestimating the uncertainty in the corresponding points and thus underweighting them relative to other observations.

2.2.2.2 Cases Where There is No Estimate of Variability or Uncertainty for Data in the Source Paper

For both the 217 N = 1 records, and the 118 records where there was no way to directly assess a coefficient of variation from the source paper, we used a stepwise regression analysis*  of the records that did provide variability/uncertainty information.  Because Log(GSD) observations themselves tend to be approximately lognormally distributed (Hattis et al. 1999), the dependent variable for these analyses was a Log{log(GSD)}—in this case the Log{log(GSD) estimated from the CV using equation 2.3 above.  The independent variables at the outset were dummy variables representing each of our previously defined characteristics: 

· Tissue preparation types--with microsomes, slices, cells in culture, and cytosol included in the reference category, **
· Parameter types--with “Activity” measurements as the reference category,

· Cell or tissue type--with liver as the reference category; intestine, lung mammary, and kidney treated groups; and “bone marrow, spleen, brain, red blood cells, skin” lumped into a single group,

· Enzyme types--with “mixed/unclassified CYP, CYP 1A1/2, CYP 2E1, Sulfate Conjugation, Alcohol Dehydrogenase, Esterases,” as the reference category, and a diverse lumped group of adenosine deaminase, alpha levulinic acid dehydratase, monoamine oxidase, thymidine and uridine phyosphorylases included in an “other and unclassified” group,

· Species--with mouse dog, monkey and rat included in the reference category, and a combination of “Cat, Guinea Pig, Hamster, Pig, and Rabbit” lumped into a single group,

· Publication year--with all years 1987 and later as the reference category.

The individual data points in this regression were weighted by the N – 1.

The final results of the stepwise regression analysis are shown in Table 2.9.  To be clear the regression estimates in the second column should be interpreted in the context of the regression equation:

Log{log(GSD)} = -1.041 + (0 or 1 for Homogenate)*0.232 + (0 or 1 for S9)*(-0.242) + (0 or 1 for Vmax)*(-0.127) + (0 or 1 for Km)*0.076 + (0 or 1 for Vmax/Km)*0.118 + (0 or 1 for CYP 2A6)*(-0.251) + (0 or 1 for CYP 2B6)*0.355 + (0 or 1 for CYP 3A or 3A4)*0.083 + (0 or 1 for Epoxide Hydrolase)*(-0.251) + (0 or 1 for GST)*(-0.184) + (0 or 1 for Glucuronosyl Transferase)*(-0.317) + (0 or 1 for “Other and Unclassified Enzyme Types)*(-0.317) + (0 or 1 for the mixed species group “Cat, Guinea Pig, etc.)*(-0.185) + (0 or 1 for Human)*0.331 + (0 or 1 for pre-1987 publication)*(0.205).





(2.4)

Overall, as might have been expected, the data sets derived from measurements in humans showed appreciably greater variability compared to measurements from animals.  Also there is a tendency for measurements from papers published before 1987 to show somewhat more variability than more recent measurements.

The final column of Table 2.9 shows the overall implications of each term for imputed Log(GSD) values.*  The final entry in the line for the intercept alone, gives the baseline Log(GSD) for a record with all the reference category characteristics for the regression—microsome tissue preparation, mixed CYP enzyme type, mouse species, etc.  Then the subsequent lines in the column show how the expected Log(GSD) is altered by adding the effects of one single non-reference factor.  Of course, actual records often differ from the reference factor in several respects, in which case the central estimate of the expected Log(GSD) is given by taking the antilog of the Log{log(GSD)} calculated from equation 2.4 above.

2.3 Regression Analysis Procedures and Results

2.3.1 A Priori Hypotheses for Interspecies Differences in Enzyme Parameters

As mentioned earlier, PBPK modelers have frequently assumed that whole-body or whole liver metabolic capacity (primarily affecting Vmax) should scale, as do metabolic rates (Adolph, 1949), approximately with body weight to the three quarters power.  The reasoning is that the body’s intake of substances likely needing detoxification will tend to scale with the intake of food calories, air, and perhaps water, all of which are related to overall metabolism.  There are a couple of complications in applying this simple theory to the in vitro enzyme parameter measurements assembled in our data base.  As applied to measurements made from liver preparations, whole-liver scaling expectations can be different across species if liver weight/body weight ratios differ, and/or if the microsomal protein weights/liver weights differs across species.  Boxenbaum (1980) in one of the seminal papers in the application of allometric theories to pharmacokinetics long ago assembled data showing that the ratio of liver weight to body weight is not constant across species (Figure 2.1). The standard error of the allometric exponent of -0.151 for this data set (if analyzed without weighting) is 0.024; the 95% confidence interval is -0.098 to -0.204.  If we take this overall -0.151 scaling coefficient as our best estimate for liver weight/body weight ratios--that is,

Liver Tissue Weight.= C Body Weight(1 - .151)
(2.5)

then the expectation for the scaling of activity per liver tissue weight becomes:

Whole Body Activity         =  K Body Weight0.75


Liver Tissue Weight 
C Body Weight(1 - 0.151)
= (K/C) Body Weight-.099 ± .046 (95% confidence limits)
(2.6)

(where C and K are constants).  It should be understood that the confidence limits derived in this equation are uncertainties on the overall mean allometric exponent of approximately –0.1, not a direct measure of the scatter of the individual species results from the line defining the overall relationship. 

An important objection to this analysis is that the unweighted regression line in Figure 2.1 does not adhere closely to the data for the three species where we have the most information in our database (rats, mice, and humans).  The weighted regression line in Figure 2.1 is found if we weight each species data point by the number of liver observations in our data base (numbers in parentheses).  It can be seen that the weighted regression line calculated in this way has a shallower slope.  By the same reasoning as was used earlier, this shallower slope implies a somewhat larger negative allometric exponent for measures of enzyme activity per unit liver weight: 

= (K/C) Body Weight-.154 ± .017  (95% confidence limits)
(2.7)

Additionally, of course, allometric projection rules for tissue preparations for other organs will depend on any systematic differences in the weights of those organs per body weight in larger vs. smaller animals.

There is one further complication.  The great bulk of our activity, Vmax, and Vmax/Km measurements are not expressed in terms of overall liver weight but as activities per weight of microsomal protein.  If there are systematic differences among species in the amounts of microsomal protein per unit liver weight, then these differences as well should modify expectations for allometric exponents of measurements made in those units.  

Barter et al. (2006) have recently assembled data on past measurements of microsomal protein per liver weight for rats, dogs, and people (Table  2.10).  In the three parts of the table we have highlighted cases where the same paper has measured microsomal protein per gram of liver in more than one species—thus emphasizing cases where presumably comparable methodology was used by the same investigators.  Overall, there appears to be some tendency for humans to have a slightly smaller amount of microsomal protein per gram of liver than the other species listed, but the case is far from compelling.  A simple allometric regression analysis on the unweighted geometric means for each species leads to a value for the allometric exponent that is not significantly different from zero— -0.053 ± 0.077 (P = 0.62).  Nevertheless, if it were to be true that heavier animals, including humans, do have systematically slightly smaller amounts of microsomal protein per gram of liver than lighter animals then the consequence would be that expectations for enzyme activities per unit microsomal protein should be slightly greater than expected purely on the basis of liver size in equations 2.6 and 2.7 above.  If we were to credit the central estimate from the unweighted regression of –0.053 as representing the best expected value then the same reasoning as used for equations 2.6 and 2.7 would lead to central expectations of –0.046 and –0.101 for the allometric exponents for activity per unit microsomal protein.  

In summary, the baseline expectations from the prevailing theory based on metabolic rates are that

· Km should not show any clear pattern of change with the body weights of different species,

· Vmax (and, by extension, Vmax/Km ratios) per unit liver weight should be approximately related to the –0.05 to –0.15 power of body weight (larger species having somewhat smaller enzyme activities per unit liver weight)—the range depending in part on the choice of weighted vs. unweighted regressions as well as statistical uncertainties.

2.3.2 Regression Analysis Procedures, and Effects of Different Weighting Assumptions

2.3.2.1 Dummy Variables for Each Individual Data Set and Species

The measurements of enzyme activities we have compiled come from a wide variety of enzyme/substrate systems, with different incubation conditions, and are expressed in a variety of units.  To bring these diverse inputs together in a single analysis requires that each group of observations (of a specific enzyme parameter in a series of species) be directly compared only within that group.   We do this by establishing a “dummy” variable for each data set, which is given a value of 1 for all the individual measurements in different species within the group, and zero for all measurements in other groups.  The overall regression equation for the runs where an allometric exponent is sought is therefore:

Mean Log(enzyme parameter measurement for data group i in Species j) =  Intercept + 
B0 Log(Body Weightspecies j) + B1 (0 or 1 for  Data Group 1) + B2 (0 or 1 for  Data Group 2) + ….Bi (0 or 1 for  Data Group i) +  For as many data groups as are included in the analysis. 
(2.8)

Where B0 is the fitted value of the allometric exponent, and the other B’s are estimates of the log(ratio) of each data group’s enzyme parameter measurements to the measurements in a reference data group for the same body weight.  (In each regression run one data group is defined as the reference group, which is given a value of 0 for all the dummy variables defining the different data groups).  Similarly, the overall regression equation for runs where the log(activity ratios) between particular species and humans are sought is:

Mean Log(enzyme parameter measurement for data group i in Species j) =  Intercept + 
Ba (0 or 1 for Species a) + Bb (0 or 1 for Species b)…+ Bj (0 or 1 for Species j)  for as many species as are represented in the analysis +B1 (0 or 1 for  Data Group 1) + B2 (0 or 1 for  Data Group 2) + ….Bi (0 or 1 for  Data Group i) +  For as many data groups as are included in the analysis.
(2.9)

For these species-specific analyses, the reference species is humans, and therefore all the human measurements are associated with zeros for all the species-specific dummy variables.  The resulting fitted Bj coefficients therefore represent the logs of the ratios of the enzyme measurements in species j to parallel measurements in humans.  For brevity, all the tables of results presented below omit the fitted values for the dummy variables for the data-group; but these values are included in the full documentation of results for all regressions contained in the “regression results” worksheet in Appendix 2C—an Excel file entitled “App2C—Intspe Data for Reganal.xls”.

2.3.2.2  Effects of Alternative Weights for the Regression Analyses

Because the “Activity” data are more numerous (316 observations) than the Michaelis-Menten parameters in our database, we choose this parameter to explore how different weights affect the description of the data by the regression models.  The first line of Table 11A shows the results of treating all observations equally in an unweighted regression analysis.  This produces an R2 value of about 0.83 and a central estimate for the allometric coefficient of about –0.070.  The run with “square root of N” weighting yields, if anything, a poorer description of the data; but the runs using inverse variance weighting show considerably improved R2 statistics at about 0.94.  There is only the tiniest difference in the R2 values for regression models of these data using our the adjusted variance-estimation procedure developed from our human data (equation 2.3) in comparison to models based on the asymptotic Aitchison and Brown formula (equation 2.2.).  

Another contrast between the results of fitting the inverse variance-weighted models compared to the unweighted model is that the sign of the overall allometric exponent changes from slightly negative (in accordance with the theoretical predictions discussed above) to slightly greater than zero; indicating a tendency for greater rather than smaller activity in species with larger body weights. Evidently there is a tendency for data sets showing greater activity in humans and other large-body weight species to have lower variances and therefore greater statistical weights than data sets showing lesser activity in species with larger body weights.

Table 2.11B shows the fit statistics for regression models that omit the Log(BW) parameter, but include a series of species-specific dummy variables.  These regressions allow assessment of ratios of observed activity in specific species relative to humans without being constrained to follow a single overall allometric exponent relationship.  Comparing the “adjusted R2 ” values (these are R2 statistics adjusted to reflect the different numbers of parameters in the species specific vs. overall allometric exponent regressions), it can be seen that the regressions with individual species dummy variables achieve an even better overall description of the data than the inverse variance weighted allometric exponent regressions.  This indicates that PBPK modelers interested in estimating likely human enzyme parameters within specific enzyme groups may well benefit from taking into account observations of animal species-specific ratios of enzyme activities to those in humans when making projections of expected activity for specific substrates.  Further information on this point will appear in Tables 2.13-2.18 below in the comparisons the weighted “root mean square prediction errors” (the equivalent of a weighted standard deviation for the departures of individual data points from the regression line) between regressions that use only an allometric exponent and regressions that use species-specific dummy variables.

Figure 2.8 shows the departures of the activity data for individual species from overall allometric regression lines for weighted vs. unweighted regressions.  Notable deviations can be seen for dogs on the one hand (often having less activity than expected with the allometric projection), and rats and monkeys (which seem to show the opposite deviation, at least for the inverse variance weighted regressions.  In subsection – below we will show results in this format for some narrower groups of enzyme activities.

All the results presented subsequently in this section will be based on inverse variance weighted regressions (using the variances estimated with the aid of calculations derived from Equation 2.3).

2.3.3 Regression Results and Comparisons with Expectations Under the A Priori Hypotheses

 The “Regression Results” worksheet in Appendix 2C* records the results of approximately 137 regression analyses of subsets of the interspecies comparative enzyme activity data we have assembled.  The records analyzed, including dummy variables, are provided in the “Activity,” “Vmax,” “Km,”, and “Vmax/Km” worksheets in the same workbook.  Generally the regressions are shown in pairs in the “Regression Results” worksheet—one allometric exponent regression where Log(Body Weight) is the only independent variable added to the base set of dummy variables for each data group included; and one species regression in which dummy variables for all species represented in the data set are included (with humans as the reference set without a specific dummy).   The results of regression runs with related parameters as dependent variables are arranged in rows:

· general regressions with Log(activity) as the modeled dependent variable begin on line 1, column AN;

· enzyme activities of more specific types begin on rows 1000 and 1500

· regressions with Log(Vmax) as the dependent variable are in two rows beginning on lines 1800 and 2400, and

· regressions with Log(Vmax/Km ratio) as the dependent variable are in two rows beginning on lines 3000 and 3600.

It is not possible in this report to exhaustively mine these findings for results that may be of interest for a diverse set of PBPK modelers, both within EPA and in other organizations.  Instead we will extract and present here some specific findings that we judge may be of most interest for comparison with assumptions derived from the overall allometric theories discussed earlier.

2.3.3.1 Testing the Expectation that Km’s Should Not Show Systematic Patterns of Variation with Species Body Weights

Not included in the detailed regression results given in Appendix 2C is a series of regression analyses for allometric coefficients for Km.   N’s and allometric exponent statistics for those regressions were recorded directly in the precursor to Table 2.12.   It can be seen that there are more “significant” P values* in both directions (indicating both positive and negative allometric exponents) than would be expected by chance from the number of comparisons made.  Negative exponents (indicating greater enzyme affinity for substrates and activity at low substrate concentrations, other things being equal, are seen for epoxide hydrolase, glutathione-S-transferases, and (based on a very small number of observations from a single paper) sulfate conjugation.  Positive coefficients (indicating less affinity and activity for humans compared to animals at low substrate concentrations; assuming comparable Vmax values) are seen for CYP3A and glucuronidation.  Because it appears that Km is not infrequently different in our data across species, it follows that the interspecies projection rules for enzyme activity will tend to differ at high doses (determined mainly by Vmax) from those applicable to low doses (determined by Vmax/Km ratios).  Therefore PBPK modelers should be wary of taking measurements at single substrate concentrations across species as representative of interspecies projection relationships across all dose rates.

2.3.3.2 Testing Expectations that Activity, Vmax, and Vmax/Km Ratios in Liver Should Scale Approximately with Body Weight-0.1.

The first potential complication that needs to be addressed in assessing this hypothesis is the possibility that there might be differences in projection rules according to the normalization units used for expressing activity, Vmax and Vmax/Km parameters.  Table 2.13 A through F show comparisons of allometric exponent regression results intended to reveal systematic differences by normalization units.  It should be understood that, with the exception of sub-tables B’ and B’’, these results include measurements from all organs, not just the liver.  The overall comparison among unit normalization seem to indicate that parameters normalized to microsomal protein and S9 protein tend to have small positive allometric exponents, while enzyme parameters normalized to cytosol protein, tissue weight, cell number, or DNA content tend to have near zero or negative central estimates for allometric exponents (closer to the theoretical expectations under the overall allometric hypothesis).  Conceivably these differences might result either from differences in the interspecies projection rules for the different types of enzymes measured with the different normalization units, or some interspecies differences in the projection rules for the normalization constants themselves.  We tend to favor the former explanation, although some effects related to the latter cannot at this stage be excluded.

Comparison of the three “B” tables in Table 2.13 gets us closer to sorting out the source of the tendency toward positive allometric exponents.  In contrast to the measures of all parameters normalized to microsome protein, and those normalized to liver microsome protein, the observations for all “CYP” enzyme activities tend to follow the expectations for an allometric projection rule close to –0.1.   

Table 2.14 therefore shows the allometric exponent regression results for two major categories of non-CYP enzymes in the liver.  While the sparse data for esterases suggest, if anything appreciable negative allometric exponents, it can be seen that the allometric exponents for “Activity” and “Vmax” measurements for glucuronosyl transferases are positive and carry high statistical significance.  Moreover, as it happens, the statistical weights calculated for the glucuronosyl transferase observations of activity and Vmax  are very large in relation to the weights assigned to the CYP measurements.*  Thus even though the glucuronidation observations are smaller in number, the inverse variance weighting allows them to have an important influence on the overall allometric exponent assessments for the combined group of all enzymes normalized to liver microsomal protein units for the activity and Vmax enzyme parameters (although not for Vmax/Km ratios).  This suggests that the emphasis in communicating our results should be on the projection rules for individual enzymes rather than the more aggregated categories of disparate activities represented in Table 2.13.  

Table 2.15 shows the results for several specific CYP enzyme categories and epoxide hydrolase normalized to liver microsomal protein.  With the possible exception of the sparse data for CYP 2A6, the bulk of the allometric exponent results for the CYPs are within two standard errors of the theoretically expected –0.1.  Based on sparse data, allometric exponent results for the aggregate of available CYP enzyme parameters in the lung appears to behave similarly (Table 2.16A).  By contrast, the data suggest that epoxide hydrolase activities in both liver and non-liver tissues (Table 2.16B and 2.16C) have positive central estimates for allometric exponents.

Table 2.17 shows allometric exponent data for glutathione-S-transferases normalized to liver cytosol protein.  The results show some instability for the different parameters; however overall the data are not inconsistent with a –0.1 interspecies projection rule.   Finally Tables 2.18 and 2.19 show similar results for a esterases, nucleoside phosphorylases, and alcohol dehydrogenases in liver.  Central estimates of the allometric exponents for phosphorylases are positive, but the other enzyme activities in the liver show allometric exponents that appear compatible with the expectation for about a –0.1 allometric exponent.

We have also done a series of allometric exponent regression results for CYP enzymes in the liver by year of publication (Table 2.20).  The original intent of these comparisons was to detect any trends in the data toward more positive allometric exponents that might indicate better techniques for extracting and preserving enzyme activities in humans in more recent years.  There was a tendency in the data for more of the “activity” measurements to be from older years, necessitating a different grouping of years for “activity” measurements vs. measurements of the Michaelis-Menten parameters. Nevertheless these aggregate results do suggest some tendency for more positive allometric coefficients in recent years, at least for “activity” and Vmax/Km parameters.  More detailed assessment of this is in order to gauge whether these observations may be complicated by trends over time in the frequency with which various CYP enzyme activities have been measured in different species.  

2.3.4 Insights from Species-Specific Comparisons of Log(Animal/Human Activity Ratios) 

As of this writing we have made a limited number of species specific comparisons of Log(animal/human ratios) for enzyme parameters derived from narrower groups of measurements after the pattern set in Figure 2.8.  Figure 2.9 shows similar comparisons for all CYP enzyme parameters per unit of liver microsomal protein.  {The error bars in these plots represent ± 1 standard error of the mean log(Animal/Human enzyme parameter ratios).  These were derived from the standard error of the value of each species’ dummy variable in a regression including all species with available data.}  It can be seen in Figure 2.9 that hamsters and monkeys tend to have CYP parameter ratios to human values grater than would be expected from the corresponding allometric regression lines--whereas dogs, and to a lesser extent rats, tend to have animal/human ratios lower than expected from the all-species weighted regression lines.

Figure 2.10 shows the same kind of plot for the more limited data available for a single CYP—CYP 2E1.  Again, the hamster datum (based a single value for each Michaelis-Menten parameter in this case) tends to be above the overall interspecies regression line.  Figure 2.11 shows similar results for the positively-sloped allometric relationships for epoxide hydrolase.  The species-specific log(animal/human ratio) regression values, and other raw information from our database, can help investigators utilize species-specific in vitro measurements of pharmacokinetic parameters to arrive at central estimates and uncertainty distributions for the corresponding human enzyme parameters.  

2.3.5 Use of the “Prediction Errors” and Other Information from the Allometric and Species-Specific Regression Results to Characterize Central Estimates and Uncertainties in Interspecies Projections of Enzyme Parameters for Input Into PBTK Models

The central estimates and standard errors of the allometric exponents given in Tables 2.13-2.19 provide some insight into the purely statistical/sampling error uncertainties in the overall interspecies projection rules derived from the data as a whole for individual enzyme types.  Similarly because humans are the reference group for the species specific regressions (represented in Figures 2.8-2.11 and given in numerical detail in Appendix 2C), the regression estimates and associated standard errors for the individual species’ regression coefficients for particular enzyme groups provide means and standard errors for the logs of the ratios of specific enzyme parameters for individual species in relation to humans.  

However these overall relationships revealed by the central estimates and standard errors of the regressions do not fully capture the uncertainties that a PBPK analyst will face when projecting human enzyme parameter values from one or more measurements of those parameters for one specific chemical substrate in animals. This section gives an overview of how analysts may wish to use the information in our database and regression results to analyze and quantify a few different sources of uncertainty.  Some analysts will wish to have a single, simple and straightforward approach to this problem; and may feel some dismay from the description below of at least four possible levels of analysis designed to address concerns for different types of uncertainties.  However we feel it is best at this point to outline the various options we see for approaches to this problem at various levels of effort required to analyze the effects of different sources and types of uncertainties.  

2.3.5.1 Inverse-Variance-Weighted “Prediction Errors”—How Much do the Individual Data Points Fitted by the Regression Deviate from the Fitted Regression Line?

The most basic type of estimate related to the uncertainty from statistical sampling error is a direct product of the regression analysis. Weighted “Root Mean Square” (RMS) “prediction errors” are the square root of the average weighted differences between each regression equation’s “predictions” and the data points used to derive the regressions.  These error estimates are provided* for both the allometric and species specific regressions in the final two columns of Tables 2.21-2.27 (with the number of data points, allometric exponent estimates and standard error reproduced for reference).  They can be used essentially as standard deviations in log space—about 95% of the weight of the individual data points is expected to be within factors of 10±1.96 RMS errors above and below the central (geometric mean) estimates from the regression estimates.  Thus for the allomentric regression results presented in the first line of Table 2.21B’’ (activity measurements for all CYP enzymes normalized to liver microsome protein), 95% of the statistical weight of the individual data points should be included within a span from 
10-1.96*0.189 = 0.43 to 101.96*0.189 = 2.35 times the central value consistent with the regression estimates.  

It can be seen in Tables 2.21-2.27 that the RMS errors for the regressions with species-specific dummy variables are generally less than those for the simpler allometric regressions.  This is to be expected because, except for cases where data from only one species other than humans was available, the regressions with species-specific dummy variables incorporate more independent parameters to describe the data than the pure allometric regressions, which have only log(BodyWeight) added to the dummy variables for individual data sets.  

Our general suggestion for the use of these regressions and variability estimates is that if species-specific regression results are available for the species that is available for animal-human projections, then the species-specific regression should be used together with the RMS error as a minimal estimate of the standard deviation for the uncertainty in the predicted enzyme parameter value for humans.  Otherwise, the projection and associated prediction error estimate can be made from the allometric regression results.

2.3.5.2 Unweighted “Prediction Errors” for Individual Data Points and Individual Chemicals

The treatment of uncertainty in the previous subsection implicitly assumes that simple statistical sampling error is the major source of uncertainty for the animal-to-human projections.  Another defensible view is that much of the deviation of the data points from the overall regression relationships (the “residual”) may reflect real chemical-to-chemical differences in interspecies projection relationships.  For this case the uncertainty may be better estimated from the distribution of unweighted residuals for the individual data points or from all data points averaged within individual chemicals.  This is because despite the fact that the data points do differ in their statistical strength, an analyst evaluating a chemical without a direct human measurement may well consider that an appreciable portion of the projection uncertainty may be better represented as a random draw from the chemicals or data points available for analysis within the enzyme parameter group, rather than a statistically-weighted draw from the same set of data.  The statistical weights, after all, were derived from properties of the experimental measurement systems that have no direct relationship to the characteristics of the chemical for which human enzyme parameter projections are desired.

To illustrate the difference in quantitative uncertainty estimates that this could make, Table 2.28 compares weighted vs unweighted root mean square errors for activity, This table gives unweighted RMS errors derived from the resisuals for the human data points only for the allometric regressions, as these represent the most parallel case for comparison with projections from animal to human data.  By contrast, for the species regressions, the residuals are provided for all species other than humans, as these residuals represent the log differences between the log ratios between specific animal species’ measurements and humans. It can be seen that the unweighted RMS errors in the 6th and 8th columns are always larger than the corresponding weighted average RMS errors in column 4—sometimes by as much as 2-3 fold.  These expanded estimates of uncertainty undoubtedly do still contain some measurement error.  Thus they can be regarded as likely to overstate true chemical-to-chemical variations in allometric projections of human values.  Nevertheless they can provide one input to overall judgments of the uncertainty in these projection.

Figure 2.12 shows probability plots of the individual data point residuals (open squares) and the individual chemical averages of these data point residuals (filled circles) for the species-specific regression of all CYP “activity” measurements per unit microsomal protein.  In this type of plot, the correspondence of the individual data points to the straight lines is a quick qualitative indicator of the correspondence of the data points to a normal distribution (in this case, in log space because the residuals plotted are in terms of logs). It can be seen that the 36 individual regression points do not show very noticeable systemtatic departures from the regression line.  However the 12 chemical-average residual data points have some tendency to form a pattern that is flatter than expected in the center of the distribution and curve toward steeper slopes at the ends.  This pattern is known as “leptokurtosis”—indicating a probability density function with a more sharply rising curve in the center of the distribution relative to a normal Gaussian expectation, and rather fewer cases in both tails than expected.  This is likely the result of both differential weighting of the data points and combination of different numbers of data points for some chemicals than for others.  

Another, more sophisticated approach to this kind of analysis would be to create a “mixed effects model” which would assess the spread of the distribution of allometric exponents {or species-specific Log(animal/human enzyme parameter ratios)} among chemicals.   We have not attempted this to date in part because we are not familiar enough with the details of techniques for accomplishing this type of analysis with the software we have available.  In part we are also concerned that such an analysis would be likely to exhaust the available degrees of freedom were we to add the needed extra parameters to many of the data sets for fore narrowly defined groups of enzymes.  We encounter extensive problems with singularities (too few degrees of freedom to estimate all parameters unambiguously) when we attempt to add additional types of variables to the base sets used for the allometric and species-specific regressions (e.g. for different types of normalizing units such as those run separately in the fixed effects regressions in Table 2.13).

2.3.5.3 Cross-Validation Analysis to Remove the Artifactual Pulling of the Regression Line Toward Specific Data-Points via the Weighted Fitting Process

A third type of analysis that is even more laborious than the one illustrated in the previous section attempts to deal specifically with the biasing effects of the fact that the more heavily weighted data points tend to influence the regression estimates in such a way as to pull the regression predictions toward them.  This has the predictable effect of reducing the weighted average residual errors below what they would be if the data points fit were not included in the analysis of how well the regression predictions correspond to truly independent data points.  The solution to this is simple in concept, although very labor intensive to accomplish in practice for any analysis based on a large number of data points.  The approach is to 

· Exclude one data point from the regression analysis.

· Re-estimate all regression parameters.

· Predict the value of the excluded data point using the re-estimated regression parameters.

· Calculate and tabulate the revised residual between the expected and observed values of the excluded point.

· Restore the first excluded point and repeat the first four steps for each successive data point.

Table 2.29 shows the results of this type of analysis for the 16 human data points included in the allometric regression for “activity” measurements (first line, fifth and sixth columns of Table 2.28).  In this table the data points are arranged in ascending order of statistical weight.  As might be expected, the more heavily weighted points have larger differences between the ordinary residuals and the cross-validation residuals calculated from regression estimates derived after excluding those points.  It can also be seen that overall, the unweighted RMS error calculated by usual procedures of 0.302 is increased to 0.441 by the cross-validation individual data point exclusion procedure.  Thus the 95% confidence range of ± 1.96 RMS errors in log space has expanded from about 15-fold (from 0.26 to 3.9 times the central estimate) to about 54-fold (from about .14 to 7.3 times the central estimate) with the cross-validation correction.  This is enough to be noticeable in characterizing the uncertainty projections of human enzyme parameter values.  It is, however tractable for input into Monte Carlo simulations of human PBPK models, and might provide a basis for judging the potential “value of information” for new human enzyme parameter measurements if the modeling shows that risk ranges derived from the modeling for specific chemicals are not as narrowly defined as would be desirable to meet decision-making needs.

2.3.5.4 Analyses Recognizing the Likely Possibility that Standard Gaussian Statistical Errors Within a Data Set Omit the Effects of Unsuspected Systematic (e.g. Calibration) Errors in Measurements

This discussion would not be complete without one final caveat.  All of the foregoing analysis treats the uncertainties in the basic measurements of enzyme parameter values as resulting from simple random errors that are in principle directly observable as fluctuations among the values within a data set.  On that foundational assumption rests the whole edifice of standard statistical procedures involving the basic calculations of standard errors, ordinary least squares regression analysis, etc.  Unfortunately there is good empirical and theoretical reason to suspect that these approaches miss a whole category of unsuspected systematic errors (e.g. instrument calibration; systematic deviations due to reagent quality and consistency), and that such errors are not trivial in relation to the random errors that everyone knows how to calculate.  Even in disciplines where most practitioners are highly capable mathematically, experience has shown that over time, improvements in measurements of fundamental parameters such as the speed of light and the weights of elementary particles wander much farther beyond their previously estimated confidence limits than would be expected if ordinary Gaussian distributions based on observed random errors within data sets were accurate descriptions of overall uncertainty (Shlyakhter, 1994). Procedures exist to model such effects (Hattis and Burmaster, 1994), but ideally they should be based on comparisons of observations of the same quantities by improved techniques with measurements made in the past and their conventionally calculated confidence limits.  The data bases of measurements of enzyme parameters and associated confidence limits created for this project lay the groundwork for such evaluations in the future as improved measurements of enzyme parameters in different species become available.
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Table 2.1

Chemical Substrates Represented in the Database
	(1-Chloroethenyl)oxirane (1-CEO)
	Aflatoxin B1
	Ethylene dibromide
	Propanol

	.- Enantiomer of 4-hydroxypropranolol (HOP)
	Aldrin
	FdUrd (5-fluoro-2'-deoxyuridine)
	R-Acetyl Propranolol

	.+ Enantiomer of 4-hydroxypropranolol (HOP)
	Aniline
	Felodipine
	R-Butyryl Propranolol

	1,2:3,4-Diepoxybutane
	Ara-A (9-ß-D-Arabinosyladenine)
	Flavopiridol
	R-Caproyl Propranolol

	1,2-Dichlorobenzene
	AZT (zidovudine)
	Flurbiprofen
	R-Enantyl Propranolol

	1,2-Epoxybutene-3 (butadiene monoxide)
	BaP-3,6-quinol
	Furan
	R-Felodipine

	1-Chloro-1,3-butadiene (ß-chloroprene)
	Benz(a)anthracene-5,6 oxide
	FUrd (5-fluorouridine)
	R-Propionyl Propranolol

	1-Chloro-2,4-dinitrobenzene
	Benzo(a)pyrene
	Ibuprofen
	R-Valeryl Propranolol

	1-Naphthol
	Benzo(a)pyrene 4,5-oxide
	Indinavir
	S-Acetyl Propranolol

	2-Aminofluorene
	Benzphetamine
	Isobutanol
	S-Butyryl Propranolol

	2-Cyanoethylene oxide
	Butadiene
	Isofenphos-oxon
	S-Caproyl Propranolol

	2-Naphthylamine
	Chloroform
	Isopentanol
	S-Enantyl Propranolol

	3,4-Benzpyrene
	Chlorzoxazone
	Kynuramine
	S-Felodipine

	3-Methyl-4-monomethylaminoazobenzene
	CNDB (1-chloro-2,4-dinitrobenzene)
	MEKO (methylethyl ketoxime)
	S-Propionyl Propranolol

	3-Methylcholanthrene 11,12-oxide
	Cocaine and ethanol combination
	Methoxychlor
	ß-Phenethylammine (PEA)

	4-Amino(4-14C)laevulinate
	Coumarin
	Methylene chloride
	Styrene

	5'-dFUrd (5'-deoxy-f-fluorouridine)
	Dapsone
	Midazolam
	Styrene Oxide

	5-Hydroxytryptamine
	DCNB (1,2-dichlor-4-nitrobenzene)
	MOCA (4,4'-methylene-bis-2-chloroaniline)
	S-Valeryl Propranolol

	7-Ethoxy-4-Trifluoromethylcoumarin
	Deoxyuridine
	NB-506--6-N-formylamino-12,13-dihydro-1,11-dihydroxy-13-(ß-D-Glucopyranosil)5H-Indolo[2,3-A]Pyrrolo[3,4-C]Carbazole-5,7(6J)-dione
	Thioxyloside (LF 4.0212)

	7-Ethoxycoumarin
	Des-isopropyl Isofenphos
	N-methylnicotinamide
	Thymidine

	7-Methylbenz(a)anthracene 5,6-oxide
	Dibenz(a,h)anthracene 5,6-oxide
	N-nitrosodimethylamine
	Trichloroethylene

	Aceclofenac [2-2(2',6'-dichlorophenylamino)phenyl]acetoxyacetic acid
	Diclofenac
	Paranitrophenylacetate
	Uridine

	Acetaminophen
	Dimethyl benzanthracene
	Phenanthrene 9,10-oxide
	Vinyl Fluoride

	Acetophenetidin (O-ethoxy-4-acetaminobenzene)
	Dimethylaniline
	Phenobarbital
	YM796--(S)-(--)-2,8-dimethyl-3-methylene-1-oxa-8-azaspiro[4,5]decane-L-tartarate monohydrate

	Acetoxime
	Ethanol
	Pirprofen
	Zatosetron

	Acetylaminofluorene
	Ethoxyresorufin
	Procainamide
	


Table 2.2

Breakdown of the Interspecies Data Base by Type of Tissue Preparation (“System Type”)

(Numbers are Observations for One Enzyme Parameter for One Substrate in One Species) 

	Enzyme Parameter
	Slices
	Cells in Culture
	Homogenate
	S9
	Cytosol
	Microsomes (reference)
	Total

	Activitya
	0
	20
	8
	45
	89
	154
	316

	Vmax
	2
	6
	10
	0
	36
	129
	183

	Km
	2
	6
	10
	0
	36
	129
	183

	Vmax/Km
	2
	6
	10
	0
	38
	131
	187

	Total
	6
	38
	38
	45
	196
	546
	869


aThat is, a substrate processing rate at a specific concentration of substrate

Table 2.3

Breakdown of the Interspecies Data Base by Tissue of Origin (“Cell Type”)

(Numbers are Observations for One Enzyme Parameter for One Substrate in One Species) 

	
	Activity
	Vmax
	Km
	Vmax/Km
	Total

	Intestine
	81
	8
	8
	8
	105

	Mammary
	4
	0
	0
	0
	4

	Lung
	20
	13
	13
	13
	59

	Kidney
	11
	8
	8
	8
	35

	Skin
	18
	0
	0
	0
	18

	Other (Bone marrow, spleen, brain, red blood cells)
	12
	0
	0
	0
	12

	Liver (reference)
	170
	154
	154
	158
	636

	Total
	316
	183
	183
	187
	869


Table 2.4

Breakdown of the Interspecies Data Base by Predominant Enzyme/Isozyme

(Numbers are Observations for One Enzyme Parameter for One Substrate in One Species) 

	
	Activity
	Vmax
	Km
	Vmax/Km
	Total

	CYP 1A1/2
	19
	0
	0
	0
	19

	CYP 2A6
	10
	0
	0
	0
	10

	CYP 2B6
	0
	3
	3
	3
	9

	CYP 2E1
	15
	34
	34
	34
	117

	CYP 3A or 3A4
	7
	22
	22
	24
	75

	CYP--mixed/unidentified (reference)
	73
	29
	29
	29
	160

	Epoxide Hydrolase
	21
	19
	19
	19
	78

	GST
	26
	8
	8
	10
	52

	Glucourosyl Transferase
	37
	19
	19
	19
	94

	Sulfate Conjugation
	0
	4
	4
	4
	12

	Alcohol Dehydrogenase
	0
	8
	8
	8
	24

	Esterases
	80
	13
	13
	13
	119

	Other Non-CYP and Unclassified
	28
	24
	24
	24
	100

	Total
	316
	183
	183
	187
	869


Table 2.5

Breakdown of the Interspecies Data Base by Species

(Numbers are Observations for One Enzyme Parameter for One Substrate in One Species) 

	
	Activity
	Vmax
	Km
	Vmax/Km
	Total

	Cat
	3
	1
	1
	1
	6

	Cow
	0
	1
	1
	1
	3

	Dog
	38
	11
	11
	11
	71

	Guinea Pig
	2
	2
	2
	2
	8

	Hamster
	10
	6
	6
	7
	29

	Horse
	0
	1
	1
	1
	3

	Monkey
	10
	5
	5
	5
	25

	Mouse
	37
	29
	29
	29
	124

	Pig
	6
	1
	1
	1
	9

	Rabbit
	5
	1
	1
	1
	8

	Rat
	104
	61
	61
	63
	289

	Human (reference)
	101
	64
	64
	65
	294

	Total
	316
	183
	183
	187
	869


Table 2.6

Breakdown of the Interspecies Data Base by Units Used for Normalized Expression of Activity, Vmax and Vmax/Km Values

(Numbers are Observations for One Enzyme Parameter for One Substrate in One Species) 

	
	Activity
	Vmax
	Km (all expressed in substrate concentration units)
	Vmax/Km
	Total Excluding Km

	weight cytosol protein
	65
	14
	.
	16
	92

	weight homogenate protein
	0
	8
	.
	8
	16

	weight S9 protein
	43
	0
	.
	0
	43

	nmol microsomal P450
	0
	3
	.
	3
	6

	wet weight of tissue
	32
	36
	.
	36
	104

	number of cells or weight DNA
	25
	6
	.
	6
	37

	weight microsomal protein (reference)
	151
	116
	.
	118
	388

	Total
	316
	183
	.
	187
	686


Table 2.7

Breakdown of the Interspecies Data Base by Publication Year

	
	Pre-1987
	1987-1992
	1993-1998
	1999-2004 (reference)
	Total

	Activity
	118
	76
	104
	18
	316

	Vmax
	8
	57
	79
	39
	183

	Km
	8
	57
	79
	39
	183

	Vmax/Km
	8
	59
	81
	39
	187

	Total
	142
	249
	343
	135
	869


Table 2.8

Standard Default Species Body Weights

	Species
	Kg BW

	Cat
	2

	Cattle
	500

	Dog
	10

	Gerbil
	0.1

	Goat
	60

	Guinea Pig
	0.5

	Hamster
	0.125

	Horse
	500

	Human
	70

	Monkey
	5

	Mouse
	0.025

	Pig
	60

	Rabbit
	2

	Rat (female)
	0.2

	Rat (gender unspecified)
	0.2

	Rat (male)
	0.25

	Sheep
	60

	Squirrel
	0.5


Source: National Institute for Occupational Safety and Health, Registry of Toxic Effects of Chemical Substances (1980 edition, volume 1) Washington, D.C. 20402: U. S. Department of Health and Human Services DHHS (NIOSH) Publication No. 81-116, Government Printing Office, February, 1982.

Table 2.9

Final Preferred Regression Modela for Imputations of Log{log(GSD)} Where No Uncertainty Statistic Was Provided in the Source Paper

	Term
	Estimate
(Central estimate 
of  regression 
coefficient)
	Std Error
	t Ratio
	Prob>|t|
	Log[log(GSD) for intercept + this term alone)
	Log(GSD)

	Intercept
	-1.041
	0.029
	-36.17
	<.0001
	-1.041
	0.091

	Homogenate
	0.232
	0.092
	2.52
	0.012
	-0.809
	0.155

	S9
	-0.242
	0.074
	-3.25
	0.0012
	-1.283
	0.052

	Vmax
	-0.127
	0.041
	-3.09
	0.0021
	-1.168
	0.068

	Km
	0.076
	0.041
	1.86
	0.0639
	-0.964
	0.109

	Vmax/Km
	0.118
	0.062
	1.89
	0.0587
	-0.923
	0.119

	CYP 2A6
	-0.251
	0.131
	-1.92
	0.0553
	-1.292
	0.051

	CYP 2B6
	0.355
	0.110
	3.22
	0.0013
	-0.686
	0.206

	CYP 3A or 3A4
	0.083
	0.050
	1.67
	0.0953
	-0.958
	0.110

	Epoxide Hydrolase
	-0.251
	0.129
	-1.94
	0.0524
	-1.292
	0.051

	GST
	-0.184
	0.068
	-2.72
	0.0068
	-1.225
	0.060

	Glucourosyl Transferase
	-0.317
	0.054
	-5.81
	<.0001
	-1.358
	0.044

	Other and Unclassified Enzyme Types
	-0.474
	0.073
	-6.46
	<.0001
	-1.514
	0.031

	Cat, Guinea Pig, etc.
	-0.185
	0.076
	-2.45
	0.0148
	-1.226
	0.059

	Human
	0.331
	0.031
	10.8
	<.0001
	-0.710
	0.195

	Before 1987
	0.205
	0.044
	4.69
	<.0001
	-0.836
	0.146


 Table 2.10

Data Assembled by Barter et al. (2006) on the Milligrams of Microsomal Protein Per Gram of Liver in Three Species

A. Humans

	Reference
	N
	Geometric Mean Mg Microsomal Protein/g Liver 

	Schoene et al (1972)
	20
	35

	Pelkonen et al. (1973)
	14
	35

	Pelkonen et al. (1974)
	10
	36

	Beaune (1982)
	14
	19

	Baarnhielm et al. (1986)
	4
	77

	Lipscomb et al. (1998)
	4
	20

	Lipscomb et al. (2003)
	20
	53

	Wilson et al. (2003)
	20
	33

	Barter et al. (unpub)
	53
	28

	Hakooz et al. (2006)
	38
	38

	
	Weighted Geom. Mean
	33.4

	
	Unweighted Geom Mean*
	34.5


B. Dogs

	Reference
	N
	Geometric Mean Mg Microsomal Protein/g Liver 

	Baarnhielm et al. (1986)
	not stated
	43

	Knaak et al (1993)
	not stated
	80

	Griffiths et al (2005)
	not stated
	56

	.
	Unweighted Geom Mean
	57.8


C. Rats

	Reference
	N
	Geometric Mean Mg Microsomal Protein/g Liver 

	Pelkonen et al. (1973)
	not stated
	40

	Baarnhielm et al. (1986)
	not stated
	54

	Carlile et al. (1997)
	not stated
	60

	Griffiths et al (2005)
	not stated
	62

	
	Unweighted Geom Mean
	53.2


Table 2.11

Effects of Different Weightings of the Data Regression Analysis Results for All Observations of Enzyme “Activity” at Single Substrate Concentrations
A. Weighting Models With Log(Species Body Weight) as the Sole Independent Variable (in Addition to Data  Group Dummy Variables)

	Weighting
	R Squared
	R Squared Adjusted
	Allometric Exponent Central Est
	Std Error of Est
	t Ratio
	Prob>|t|

	None (all records equal)
	0.8266
	0.7435
	-0.070
	0.031
	-2.28
	0.024

	Square Root of N
	0.7900
	0.6895
	-0.092
	0.033
	-2.81
	0.006

	Inverse Variance (as calculated by Eq 2.3)
	0.9405
	0.9121
	0.069
	0.026
	2.67
	0.008

	Inverse Variance Using Unmodified Aitchison and Brown Formula (Eq. 2.2)
	0.9394
	0.9104
	0.075
	0.026
	2.86
	0.005


B. Weighting Models With Dummy Variables for Individual Species as Independent Variables (in Addition to Data Group Dummy Variables)

	Weighting
	R Squared
	R Squared Adjusted

	None (all records equal)
	0.8991
	0.8450

	Square Root of N
	0.8845
	0.8225

	Inverse Variance (as calculated by Eq 2.3)
	0.9564
	0.9330

	Inverse Variance Using Unmodified Aitchison and Brown Formula (Eq. 2.2)
	0.9557
	0.9319


Table 2.12

Allometric Coefficient Regression Results for Km

	Enzyme Group
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P*

	All
	183
	0.085
	0.025
	3.48
	0.0007

	All CYPs
	88
	-0.002
	0.027
	-0.06
	0.95

	CYP 2E1
	34
	-0.092
	0.047
	-1.95
	0.07

	CYP 3A 
	22
	0.078
	0.028
	2.74
	0.017

	CYPs--other, mixed
	32
	0.035
	0.047
	0.76
	0.46

	Epoxide Hydrolase
	19
	-0.337
	0.113
	-2.97
	0.011

	Esterases
	13
	-0.127
	0.130
	-0.98
	0.36

	Alcohol dehydrogenase
	8
	-0.064
	0.044
	-1.44
	0.25

	Thymidine and Uridine Phosphorylases
	14
	-0.016
	0.027
	-0.59
	0.58

	Glutathione-S-Transferases
	8
	-0.133
	0.031
	-4.22
	0.014

	Glucuronidation
	19
	0.298
	0.027
	11.09
	<.0001

	Sulfate Conjugation
	4
	-0.777
	0.006
	-136
	0.005


*This is the probability of obtaining by chance an estimate of the allometric exponent as far from zero as was observed, if the null hypothesis of a zero exponent were in fact true.

Table 2.13

Allometric Coefficient Regression Results for Measurements with Different Unit Normalizations

A.  All Measurements For All Types Of Unit Normalizations

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	316 (170)a
	0.069
	0.026
	2.68
	0.008

	Vmax
	183 (154)
	0.256
	0.014
	18.69
	<.0001

	Vmax/Km ratio
	187 (158)
	-0.050
	0.039
	-1.28
	0.20


a The numbers in parentheses are the numbers of observations in the liver.

B. All Parameters Normalized to Microsome Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	151 (84)
	0.136
	0.030
	4.53
	<.0001

	Vmax
	116 (95)
	0.273
	0.009
	29.49
	<.0001

	Vmax/Km ratio
	118 (97)
	-0.048
	0.039
	-1.23
	0.22


a The numbers in parentheses are the numbers of observations in the liver.

B’. All Parameters Normalized to Liver Microsome Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	84
	0.180
	0.027
	6.6
	<.0001

	Vmax
	95
	0.274
	0.010
	28.61
	<.0001

	Vmax/Km ratio
	97
	-0.049
	0.042
	-1.17
	0.25


Table 2.13, Continued

B’’. All CYP Enzymes Normalized to Liver Microsome Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	52
	0.036
	0.044
	0.83
	0.41

	Vmax
	57
	-0.185
	0.048
	-3.86
	0.0004

	Vmax/Km ratio
	59
	-0.138
	0.036
	-3.84
	0.0005


C. All Parameters Normalized to Cytosol Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	66
	-0.675
	0.095
	-7.12
	<.0001

	Vmax
	14
	-0.344
	0.026
	-13.4
	<.0001

	Vmax/Km ratio
	16
	0.059
	0.181
	0.32
	0.75


D. All Parameters Normalized to S9 Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	43
	0.117
	0.080
	1.47
	0.152

	Vmax
	no data
	
	
	
	

	Vmax/Km ratio
	no data
	
	
	
	


E. All Parameters Normalized to Tissue Weight

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	32
	-0.002
	0.039
	-0.05
	0.96

	Vmax
	36
	-0.090
	0.105
	-0.86
	0.40

	Vmax/Km ratio
	36
	-0.115
	0.105
	-1.1
	0.29


Table 2.13, Continued

F. All Parameters Normalized to Cell Number or DNA Weight

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	25
	-0.005
	0.034
	-0.16
	0.88

	Vmax
	6
	-0.100
	0.155
	-0.65
	0.56

	Vmax/Km ratio
	6
	-0.880
	0.427
	-2.06
	0.13


Table 2.14

Allometric Coefficient Regression Results for Non-CYP Enzymes Normalized to Liver Microsomal Protein

A. Esterase Observations in Liver Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	5
	-0.221
	0.093
	-2.38
	0.14

	Vmax/Km ratio
	5
	-0.478
	0.190
	-2.52
	0.13


B. Glucuronosyl Transferase Observations in Liver Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	33
	0.191
	0.041
	4.64
	<.0001

	Vmax
	19
	0.283
	0.007
	38.17
	<.0001

	Vmax/Km ratio
	19
	-0.117
	0.116
	-1.01
	0.33


Table 2.15

Allometric Exponent Regression Results for Narrower Enzyme Groups Normalized to Liver Microsomal Protein

A. Enzyme Categories with Activity Data Only:

	
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	CYP 1A1/2
	8
	-0.163
	0.049
	-3.36
	0.02

	CYP 2A6
	4
	0.496
	0.172
	2.89
	0.10


B. CYP 2E1

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	6
	-0.078
	0.074
	-1.05
	0.37

	Vmax
	23
	-0.278
	0.086
	-3.22
	0.006

	Vmax/Km ratio
	23
	-0.130
	0.042
	-3.09
	0.008


C. CYP 3A and 3A4

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	20
	-0.077
	0.084
	-0.91
	0.380

	Vmax/Km ratio
	22
	-0.339
	0.083
	-4.06
	0.0014


D. Other and/or Mixed CYPs

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	34
	0.031
	0.045
	0.68
	0.50

	Vmax
	14
	-0.067
	0.029
	-2.28
	0.048

	Vmax/Km ratio
	14
	-0.049
	0.066
	-0.74
	0.48


Table 2.15, Continued

E. Epoxide Hydrolase

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	14
	0.061
	0.117
	0.52
	0.61

	Vmax/Km ratio
	14
	0.386
	0.053
	7.28
	<.0001


Table 2.16

Allometric Exponent Regression Results for Other Non-Liver Enzyme Activities Per Unit Microsomal Protein

A.  All CYP Activities in Lung Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	8
	-0.264
	0.187
	-1.41
	0.22

	Vmax/Km ratio
	8
	-0.115
	0.165
	-0.7
	0.52


B.  Epoxide Hydrolase Activities in Lung Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	3
	0.159
	0.017
	9.45
	0.07

	Vmax
	5
	0.250
	0.177
	1.41
	0.25

	Vmax/Km ratio
	5
	0.072
	0.093
	0.77
	0.50


C.  Epoxide Hydrolase Activities in Skin Per Unit Microsmal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	18
	0.110
	0.040
	2.72
	0.02

	Vmax
	no data
	
	
	
	

	Vmax/Km ratio
	no data
	
	
	
	


 Table 2.17

Allometric Exponent Regression Results for Liver Glutathione-S-Transferase Normalized to Cytosolic Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	18
	-0.150
	0.047
	-3.21
	0.009

	Vmax
	8
	-0.3651
	0.0270
	-13.5200
	0.0002

	Vmax/Km ratio
	10
	0.078
	0.225
	0.35
	0.74


Table 2.18

Allometric Exponent Regression Results for Esterases
A. Esterase Observations in Liver Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	5
	-0.221
	0.093
	-2.38
	0.14

	Vmax/Km ratio
	5
	-0.478
	0.190
	-2.52
	0.13


B. Esterase Observations in Intestine Per Unit Cytosolic Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	39
	-0.028
	0.014
	-1.98
	0.059

	Vmax
	6
	-0.373
	0.422
	-0.89
	0.44

	Vmax/Km ratio
	6
	0.027
	0.335
	0.08
	0.94


Table 2.19

Allometric Exponent Regression Results for Other Enzyme Activities Per Unit Wet Weight of Liver

A. Thymidine and Uridine Phosphorylases Per Unit Wet Weight of Liver

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	No data
	
	
	
	

	Vmax
	14
	0.183
	0.094
	1.95
	0.10

	Vmax/Km ratio
	14
	0.035
	0.113
	0.31
	0.77


A. Cytosol Alcohol Dehydrogenases Per Unit Wet Weight of Liver

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	8
	-0.115
	0.043
	-2.64
	0.08

	Vmax/Km ratio
	8
	-0.073
	0.038
	-1.93
	0.15


Table 2.20

Allometric Exponent Regression Results for All Liver CYP Enzyme Parameters in Papers Published in Different Periods
	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	t Ratio
	P

	Pre-1987 Activity
	26
	-0.020
	0.042
	-0.48
	0.64

	1987-1992 Activity
	13
	0.005
	0.068
	0.07
	0.95

	1994+ Activity
	13
	0.139
	0.128
	1.08
	0.31

	
	
	
	
	
	

	Pre-1993 Vmax
	23
	-0.071
	0.091
	-0.79
	0.44

	1993-1998 Vmax
	22
	-0.359
	0.073
	-4.9
	0.0003

	2004 Vmax
	12
	-0.078
	0.025
	-3.08
	0.015

	
	
	
	
	
	

	Pre-1993 Vmax/Km
	23
	-0.384
	0.082
	-4.67
	0.0004

	1993-1998 Vmax/Km
	24
	-0.146
	0.038
	-3.9
	0.0016

	2004 Vmax/Km
	14
	0.183
	0.094
	1.95
	0.10


Table 2.21

Weighted Root Mean Square Prediction Errors for Allometric and Species-Specific Regression Results for Measurements with Different Unit Normalizations

A.  All Measurements For All Types Of Unit Normalizations

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	316 (170)a
	0.069
	0.026
	0.258
	0.221

	Vmax
	183 (154)
	0.256
	0.014
	0.171
	0.156

	Vmax/Km ratio
	187 (158)
	-0.050
	0.039
	0.357
	0.301


a The numbers in parentheses are the numbers of observations in the liver.

B. All Parameters Normalized to Microsome Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	151 (84)
	0.136
	0.030
	0.218
	0.189

	Vmax
	116 (95)
	0.273
	0.009
	0.098
	0.078

	Vmax/Km ratio
	118 (97)
	-0.048
	0.039
	0.316
	0.291


a The numbers in parentheses are the numbers of observations in the liver.

B’. All Parameters Normalized to Liver Microsome Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	84
	0.180
	0.027
	0.162
	0.138

	Vmax
	95
	0.274
	0.010
	0.091
	0.073

	Vmax/Km ratio
	97
	-0.049
	0.042
	0.312
	0.288


Table 2.21, Continued

B’’. All CYP Enzymes Normalized to Liver Microsome Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	52
	0.036
	0.044
	0.189
	0.163

	Vmax
	57
	-0.185
	0.048
	0.154
	0.102

	Vmax/Km ratio
	59
	-0.138
	0.036
	0.205
	0.170


C. All Parameters Normalized to Cytosol Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	66
	-0.675
	0.095
	0.300
	0.112

	Vmax
	14
	-0.344
	0.026
	0.041
	0.038

	Vmax/Km ratio
	16
	0.059
	0.181
	0.275
	0.119


D. All Parameters Normalized to S9 Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	43
	0.117
	0.080
	0.296
	0.168

	Vmax
	no data
	
	
	
	

	Vmax/Km ratio
	no data
	
	
	
	


Table 2.21, Continued

E. All Parameters Normalized to Tissue Weight

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	32
	-0.002
	0.039
	0.119
	0.116

	Vmax
	36
	-0.090
	0.105
	0.379
	0.168

	Vmax/Km ratio
	36
	-0.115
	0.105
	0.541
	0.297


F. All Parameters Normalized to Cell Number or DNA Weight

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	25
	-0.005
	0.034
	0.091
	0.051

	Vmax
	6
	-0.100
	0.155
	0.287
	Not done

	Vmax/Km ratio
	6
	-0.880
	0.427
	0.513
	Not done


Table 2.22

Allometric Coefficient Regression Results for Non-CYP Enzymes Normalized to Liver Microsomal Protein

A. Esterase Observations in Liver Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	5
	-0.221
	0.093
	0.127
	0.032

	Vmax/Km ratio
	5
	-0.478
	0.190
	0.332
	0.331


B. Glucuronosyl Transferase Observations in Liver Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	33
	0.191
	0.041
	0.156
	0.131

	Vmax
	19
	0.283
	0.007
	0.032
	0.021

	Vmax/Km ratio
	19
	-0.117
	0.116
	0.469
	0.325


Table 2.23

Allometric Exponent Regression Results for Narrower Enzyme Groups Normalized to Liver Microsomal Protein

A. Enzyme Categories with Activity Data Only: 

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	CYP 1A1/2
	8
	-0.163
	0.049
	0.118
	0.078

	CYP 2A6
	4
	0.496
	0.172
	0.113
	Not enough degrees of freedom


B. CYP 2E1

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	6
	-0.078
	0.074
	0.185
	0.128

	Vmax
	23
	-0.278
	0.086
	0.063
	0.058

	Vmax/Km ratio
	23
	-0.130
	0.042
	0.130
	0.075


C. CYP 3A and 3A4

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	20
	-0.077
	0.084
	0.213
	0.148

	Vmax/Km ratio
	22
	-0.339
	0.083
	0.255
	0.141


Table 2.23, Continued

D. Other and/or Mixed CYPs

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	34
	0.031
	0.045
	0.241
	0.163

	Vmax
	14
	-0.067
	0.029
	0.116
	0.104

	Vmax/Km ratio
	14
	-0.049
	0.066
	0.257
	0.245


E. Epoxide Hydrolase

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	no data
	
	
	0.001
	Not done--too few data points

	Vmax
	14
	0.061
	0.117
	0.188
	0.013

	Vmax/Km ratio
	14
	0.386
	0.053
	0.100
	0.011


Table 2.24

Allometric Exponent Regression Results for Other Non-Liver Enzyme Activities Per Unit Microsomal Protein

A. All CYP Activities in Lung Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	8
	-0.264
	0.187
	0.365
	0.116

	Vmax/Km ratio
	8
	-0.115
	0.165
	0.427
	0.094


B.  Epoxide Hydrolase Activities in Lung Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	3
	0.159
	0.017
	0.001
	Not done--too few data points

	Vmax
	5
	0.250
	0.177
	0.188
	0.013

	Vmax/Km ratio
	5
	0.072
	0.093
	0.100
	0.011


C.  Epoxide Hydrolase Activities in Skin Per Unit Microsmal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	18
	0.110
	0.040
	0.138
	Not done

	Vmax
	no data
	
	
	
	

	Vmax/Km ratio
	no data
	
	
	
	


 Table 2.25

Allometric Exponent Regression Results for Liver Glutathione-S-Transferase Normalized Cytosolic Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	18
	-0.150
	0.047
	0.064
	0.060

	Vmax
	8
	-0.3651
	0.0270
	0.029
	0.029

	Vmax/Km ratio
	10
	0.078
	0.225
	0.259
	0.054


Table 2.26

Allometric Exponent Regression Results for Esterases
A. Esterase Observations in Liver Per Unit Microsomal Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	5
	-0.221
	0.093
	0.127
	0.032

	Vmax/Km ratio
	5
	-0.478
	0.190
	0.332
	0.331


B. Esterase Observations in Intestine Per Unit Cytosolic Protein

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	39
	-0.028
	0.014
	0.551
	0.127

	Vmax
	6
	-0.373
	0.422
	0.382
	0.058

	Vmax/Km ratio
	6
	0.027
	0.335
	0.495
	0.165


Table 2.27

Allometric Exponent Regression Results for Other Enzyme Activities Per Unit Wet Weight of Liver

A. Thymidine and Uridine Phosphorylases Per Unit Wet Weight of Liver

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	No data
	
	
	
	

	Vmax
	14
	0.183
	0.094
	0.313
	0.313

	Vmax/Km ratio
	14
	0.035
	0.113
	0.428
	0.428


B. Cytosol Alcohol Dehydrogenases Per Unit Wet Weight of Liver

	Parameter
	Number of Observations
	Allometric Exponent Central Estimate
	Standard Error of Exponent Estimate
	Allom Exp Reg Wt Ave RMS Predict Error
	Species Reg Wt Ave RMS Predict Error

	Activity (at a specific substrate concentration)
	no data
	
	
	
	

	Vmax
	8
	-0.115
	0.043
	0.030
	0.030

	Vmax/Km ratio
	8
	-0.073
	0.038
	0.076
	0.076


Table 2.28

Comparison of Weighted vs Unweighted RMS Errors for All CYP Enzyme Activities Per Unit of Liver Microsomal Protein (All Errors are Expressed as Log10 Values)


--------------Unweighted Analyses---------------

	Enzyme Parameter
	Reg Type
	N
	Weighted Average RMS Errors
	N
	Unwt RMS Errors for Individual Data Points
	N
	Chemical Average Unwt RMS Errors

	Activity
	Allom
	52
	0.189
	16
	0.302
	12
	0.308

	
	Species
	52
	0.163
	36
	0.325
	12
	0.225

	Vmax
	Allom
	57
	0.154
	19
	0.362
	17
	0.365

	
	Species
	57
	0.102
	38
	0.236
	17
	0.172

	Vmax/Km
	Allom
	59
	0.205
	20
	0.599
	18
	0.622

	
	Species
	59
	0.170
	39
	0.187
	18
	0.174


Table 2.29

Comparison of Simple vs Cross-Validation Analysis of Residuals for the 16 Human Data Points in the Allometric Regression analysis of All CYP Enzyme Activity Measurements Per Unit of Liver Microsomal Protein

	Excluded Point 
	Weight
	Ordinary Residual (Without Exclusion)
	(Ordinary Residual)^2
	Cross-Validatiion Residual (After Exclusion)
	(Cross-Validation Residual)^2

	Moore86
	16
	0.039
	0.002
	0.058
	0.003

	Fred822AF
	51
	-0.074
	0.005
	-0.080
	0.006

	Hammons85NA
	70
	-0.414
	0.172
	-0.422
	0.179

	Rudo88AAFactmetab
	70
	0.109
	0.012
	0.155
	0.024

	Hammons85AF
	95
	-0.457
	0.209
	-0.505
	0.255

	ObrienAFB1totmet
	121
	0.357
	0.128
	0.385
	0.148

	ObrienAFB1actmet
	121
	-0.161
	0.026
	-0.209
	0.044

	Volkel99MEKO
	157
	-0.588
	0.346
	-0.676
	0.457

	Prough79BAP
	165
	-0.705
	0.496
	-0.859
	0.738

	Cantoreggi97VF
	176
	-0.131
	0.017
	-0.225
	0.051

	Csan 92Chlorzox
	211
	0.012
	0.000
	0.016
	0.000

	Phil84ethoxres
	223
	0.062
	0.004
	0.076
	0.006

	Volkel99Acet
	287
	0.038
	0.001
	0.079
	0.006

	Rudo88AAFtotmetab
	396
	0.191
	0.037
	0.258
	0.067

	RamsdAFB1
	4557
	-0.058
	0.003
	-0.619
	0.383

	Rodrig Coum94
	10360
	0.073
	0.005
	0.862
	0.744

	Sum
	17076
	-1.706
	1.464
	-1.707
	3.111

	Mean
	1067
	-0.107
	0.091
	-0.107
	0.194

	RMS error
	.
	.
	0.302
	.
	0.441


Figure 2.1

Allometric Plot of Data of Boxenbaum (1984) on Liver Weight/Body Weight Ratios for Different Species With and Without Weighting by the Numbers of Liver Observations in our Database (Numbers Shown in Parentheses)
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Figure 2.2

Exploration of A Possible Bias With N in the Relationship Between Observed vs. Aitchison and Brown (1957) Formula-Predicted Log(Geometric Mean) Enzyme Parameter Values
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Figure 2.3

Exploration of A Possible Bias With Coefficient of Variation in the Relationship Between Observed vs. Aitchison and Brown (1957) Formula-Predicted Log(Geometric Mean) Enzyme Parameter Values
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Figure 2.4

Exploration of A Possible Bias With N in the Relationship Between Observed vs. Aitchison and Brown (1957) Predicted Log(Geometric Standard Deviation) of Enzyme Parameter Values
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Figure 2.5

Exploration of A Possible Bias With CV in the Relationship Between Observed vs. Aitchison and Brown (1957) Predicted Log(Geometric Standard Deviation) of Enzyme Parameter Values
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Figure 2.6

Exploration of A Possible Bias With N in the Relationship Between Observed vs.  Predicted Log(Geometric Standard Deviation) Parameter Values “Predicted” by A Modified Empirical Formula Adding .074 CV to Predictions from the Older Aitchison and Brown (1957) Formula
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Figure 2.7

Exploration of A Possible Bias With CV in the Relationship Between Observed vs.  Predicted Log(Geometric Standard Deviation) Parameter Values “Predicted” by A New Empirical Formula Adding .074 CV to Predictions from the Older Aitchison and Brown (1957) Formula
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Figure 2.8

“Activity” Parameter Measurements for All Enzymes in all Organs--Allometric Regression Results vs. Individual Species Observations for Unweighted vs. Weighted Analyses Relative to Activities in Humans
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Figure 2.9

Plot of Species Specific Log(All CYP/Microsomal Protein Measurements Relative to Humans) Compared to the Corresponding Allometric Relationships
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Figure 2.10

Plot of Species Specific Log(CYP 2E1/Microsomal Protein Measurements Relative to Humans) Compared to the Corresponding Allometric Relationships
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Figure 2.11

Plot of Species Specific Log((Epoxide Hydrolase/Microsomal Protein Measurements Relative to Humans) in Relation to the Corresponding Allometric Relationships
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Figure 2.12

Probability Plot of the Residuals from Individual Data Points and the Chemical Average Residuals for the Species-Specific Regression for “Activity” Measurements for All CYPs Per Unit Microsomal Protein
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3. Database of Human Interindividual Variability in Enzyme Activities
Physiologically-based toxicokinetic (PBTK) modeling is a potentially helpful tool to quantify the human inter-individual variability in internal doses of toxicants.  Depending on the end-effect to be modeled, PBTK-based assessments could be used in combination with other data either to quantitatively assess risks directly, or to derive indicated adjustments for the pharmacokinetic portion of the uncertainty factor for inter-individual variability. This research project quantifies the in vitro human variability of a number of phase I and phase II enzymes responsible for the biotransformation of both pharmaceuticals and environmental contaminants.   After incorporation into PBTK models, the results of this analysis could be used along with measures of variability or uncertainty in other model parameters to evaluate human TK variability, which in turn would allow for potential replacement of the default uncertainty factor of 3 for human inter-individual TK differences. The results presented in this section are individual and aggregate analyses of data on the observed human variability for activity, Vmax, Km, and Vmax/Km ratios for various groups of CYP/P450 enzymes, epoxide hydrolases, and Phase II conjugating enzymes.  The log(GSD) (the standard deviation of the log transformed values) is used to quantify the variability in each parameter.  

This section of the report is divided into six parts.  The first provides context and background for the construction of the database.  An overview of the human variability uncertainty factor is given, along with a summary of the IPCS guidelines for breaking this uncertainty factor down into pharmacokinetic and pharmacodynamic components.  The enzyme systems involved in the biotransformation processes for which the in vitro pharmacokinetic measurements are made are also introduced in this first section.

The second part discusses the content of the database and the preliminary calculations needed to translate data in the source papers into consistent entries into our compilation. The database currently contains 122 data-lines, with 66 entries for interindividual variability in Activity, 16 for Km, 22 for Vmax, and 18 for Vmax/Km. Within this subsection, updates made to the database from earlier versions are briefly discussed.  Also reviewed in this section are literature searches conducted to expand the database, the criteria for inclusion of studies in the database, the yield of these searches after screening, and the extraction and nature of the data from the selected papers.  Background information is then provided on the types of liver preparations used to conduct the pharmacokinetic measurements catalogued in this database. Criteria are outlined for the classification of pharmacokinetic measurements into enzyme categories.   

The third subsection contains an in depth discussion and analysis of factors that could bias observed measures of inter-individual variability.  This includes a discussion of the effects of storage on frozen liver tissue and microsomes.  Overall, inter-individual variability does not appear to be detectably affected by the storage of liver tissue at -800 C.  This subsection also provides a discussion of the effect of study year and source/condition of liver tissue.  Neither the year the study was conducted, nor the source of the liver tissue used for the assays are found statistically significantly associated with the measures of inter-individual variability. Tables 3.4- 3.6 further detail the studies that fall into the liver condition/source categories.  Table 3.7 categorizes the database by study year.   

In the fourth subsection, the log(GSD) results are summarized by pooling the log(GSD)s by enzyme categories and by individual enzymes across the four pharmacokinetic parameters in the database.  2.5%-97.5% Lower and Upper 95% Confidence Limits (- or + 1.96 standard deviations) are calculated on these central estimates, as well as  95/50% and 99/50% “Fold Values” based on the central estimate.  These numbers are helpful for comparison to the factor of “3” allocated to the pharmacokinetic human variability in the IPCS Guidelines.  These results are contained in tables 3.9-3.14.  Briefly, it was found that the Phase I enzymes tend to be more variable than the Phase II enzymes when the variability measures are taken as a whole.  The Phase I “fold” values are also often found to exceed “3” the IPCS proposed default pharmacokinetic uncertainty factor, but these measurements should be incorporated into a PBPK model before any final conclusions are drawn.   Measures of Km, Vmax and Vmax/Km were found to be more variable than measures of activity.  Moreover, within studies, individuals with relatively high values of Log(Vmax) tended to also have relatively high values of Log(Km) (correlation coefficient = 0.46).  This positive correlation is summarized for the individual studies in Table 3.15 and discussed in Section 3.4.2.

Next, the use of the enzyme variability observations in PBPK models is discussed.  To help relate the variability in in vitro enzyme activity measurements per unit microsomal, ctyololic, or S9 protein documented in the database to the variability in enzyme parameters used in PBPK models, Table 3.16 provides a summary of variability in total P450 and specific P450 isozyme protein content of microsomes.  However, ideally, additional information on the variability in microsomal, cytosolic, and S9 protein per gram of liver is needed to more fully inform these translations for PBPK modelers.

Overall, the database provides 122 measures of inter-individual variability based on Activity, Km, Vmax and Vmax/Km. This can be a useful source of “prior” information for PBPK modelers.  Information is subdivided by Phase I or Phase II enzymes groups, or specific enzymes.  Information for a variety of enzyme parameters (Activity, Km, Vmax or Vmax/Km) can be analyzed as the results are displayed separately.  The database itself is supplied in the form of an Excel file, labeled “Appendix 3A—Interind Dbase”.  The source references are in a word file labeled “Appendix 3B—Source Refs”. 

3.1 Introduction and Background

3.1.1 Background on the Uncertainty Factor for Human Variability

Currently in the United States, a Reference Dose (RfD) is derived for chemicals that may pose a health threat to humans for adverse effects other than cancer.  The RfD, in theory, takes into account variability across the human population in response to toxicants. This value is meant to be protective of the entire population, inclusive of the young, old, sick, minority groups and other potentially susceptible populations.  The RfD for a particular chemical is then further used by several different agencies to determine acceptable levels of contaminants in air, water and soil.  

Human variability is treated differently when assessing carcinogens and non-carcinogens.  For non-carcinogens, generally a reference dose or a reference concentration is derived.  The reference dose is defined by EPA as:
 An estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious effects during a lifetime.  It can be derived from a NOAEL, LOAEL, or BMD, with UF’s generally applied to reflect limitations of the data used.(US Environmental Protection Agency 2002). 

The uncertainty factors are by default factors of 10 or occasionally 3.  The individual uncertainty factors can be increased or reduced if there is data to justify doing so.  The uncertainty factors available for use for individual chemicals (depending on the available toxicity information for each chemical) include:

· Intraspecies (Inter-individual) Uncertainty Factor (Human Variability)

· Interspecies Uncertainty Factor

(Accounts for uncertainty in the extrapolation from laboratory animal data to humans)

· LOAEL-NOAEL Uncertainty Factor

· Database Uncertainty Factor

· Subchronic to Chronic Duration Uncertainty Factor

· Modifying Factor (US Environmental Protection Agency 2002)
The human variability uncertainty factor accounts for two types of variability: pharmacokinetic and pharmacodynamic.  Pharmacokinetic variability includes differences in the rates of absorption, distribution, metabolism and excretion of a chemical throughout the body (Timbrell 2002) that cause differences among people in the effective dose at a chemical’s site of action per unit of external dose.  Pharmacodynamic variability is defined as differences among people in internal dose needed to produce a given incidence of response at a defined level of severity (Hattis et al. 1999a). 


In addition to the true human variability in the population, there is also uncertainty in the measurement of this variability.  This uncertainty is also intended to be reflected in the value of the human variability factor (US Environmental Protection Agency 2002), although exactly how it is incorporated is not formally defined.

3.1.2 Background on Enzyme Systems Studied

Many enzyme systems can play a role in the metabolism of environmental contaminants.  The majority of these systems can be divided into what is termed Phase I and Phase II reactions. 

Phase I reactions generally modify the structure of the compound so that a more oxidized functional group is introduced into the molecule. The cytochrome P450 system is included under the phase I category.  There are approximately 15 identified human Cytochrome p450 (also referred to as “CYP”) enzymes. Generally the highest concentration of Cytochrome p450 enzymes are found in the liver though they are also found throughout the body (Klaassen 1996).  Because of this, and because many compounds taken in orally undergo substantial “first pass” metabolism in the liver, the focus of this analysis is on the variability in the liver.

These enzymes exhibit variability in expression and activity across the human population and are therefore a major focus of research to quantify their variability.    CYP 2E1 is responsible for the metabolism of over 80 environmental contaminants (Lieber 1997).  CYP 2D6 and CYP 2C9 and 2C19 genes also have known polymorphisms in humans that affect the ability of these enzymes to metabolize certain drugs, and possibly environmental contaminants. Variability of these enzymes in the liver across the population is likely to affect both the rate of formation of “activated” intermediate metabolites and, or conversely, the rate of detoxification of toxic parent chemicals (Venkatakrishnan, Moltke et al. 2001).  In addition to genetic polymorphisms, many other factors can affect the activity of the p450 enzymes including drugs, alcohol consumption, environmental contaminants themselves and disease states. 

The oxidized functional group introduced during a phase I reaction allows for later conjugation with a highly polar substance (such as glutathione) in a phase II reaction, making the complex more water soluble and therefore more easily removed from the body (Klaassen 1996). The six reactions that constitute the phase II conjugation reactions are listed in Table 3.1. Individual differences in the concentrations of molecules needed in the conjugation process (such as glutathione) will also contribute to variability in the Phase II reactions.

3.1.3 Background on IPCS Guidelines

IPCS Framework is a result of work done by an international panel of experts in the field of risk assessment brought together to harmonize risk assessment procedures across the regulatory agencies of different countries. 

“The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.” (World Health Organization 2005).

 The IPCS framework expands upon the historical framework for the derivation of RfD’s by allowing for the incorporation of chemical specific data (in the form of Chemical Specific adjustment factors--CSAF’s) into defined modifications of the uncertainty factor analysis when enough suitable quantitative toxicokinetic and/or toxicodynamic data is available.  Currently, enough data is not usually available to replace both factors, and a framework for incorporating data to replace specific components of the uncertainty factors is outlined (World Health Organization 2001). 

The framework used was originally proposed by Renwick (1993), modified by international review (IPCS, 1994) and expanded upon by Renwick and Lazarus (1998) (Renwick and Walker 1993; Renwick and Lazarus 1998; Meek, Renwick et al. 2002; Meek, Renwick et al. 2003).  The framework was then reissued in 2005 (World Health Organization 2005).

 The current framework proposes that the uncertainty factors be split into toxicokinetic and toxicodynamic components.  For interspecies data, a factor for kinetics of 4.0 and dynamics of 2.5 is proposed.  For intra-individual variability an even split of 3.2 for both the kinetic and dynamic factors is proposed.  When enough data are available, for example, to replace the intra-individual toxicokinetic portion but not the toxicodynamic portion, the data derived CSAF can be substituted for the toxicokinetic portion, keeping the default values for the other components. Specific guidelines are given which outline suitable data to be used for replacing the default components.  

Guidelines are also given for the use of PBPK models in the derivation of CSAF’s.  These include the need to validate the model with a data set other than the one used to construct it and the suggestion that the model should incorporate human variability in its parameters.  The guidelines caution that in vitro data for enzyme kinetics should not be used as a direct measure of human variability but scaled to determine intrinsic clearance (Vmax/Km) or incorporated into a PBPK model (World Health Organization 2005).

Suggestions from the IPCS document that can be applied to the interpretation of the  database reported here include the need to evaluate the adequacy of data used to derive a CSAF, the relevance of the population studies, route of exposure, magnitude of the dose, and number of subjects in the study.  These suggestions will be addressed throughout the discussion in this section.  The guidelines state that it is necessary to determine whether the population distribution is bimodal or unimodal and if a distinct subgroup exists, based on a polymorphism or other biological factor.

In the absence of data to the contrary, the guidance states that it can be assumed that pharmacokinetic parameter values are lognormally distributed, a statement which is consistent with the findings of this database.  The guidance also states that sensitive subpopulations should be addressed separately and population distributions used to calculate the CSAF’s analyzed in terms of the ratio of percentiles (e.g. 95%/50% of 99/50%) (World Health Organization 2005).  

By using the methods outlined above, the overall CSAF may end up larger or smaller than the traditional default value of 10 for overall interindividual variability.  

3.2 Description of the Database of Human Interindividual Variability in Enzyme Activities

3.2.1 Further Screening and Updates of Data from the Older Interindividual Variability Database

In contrast to the group measurements that are acceptable for the “human” measurements in the interspecies data set, this “individual data” database includes only papers that provide individual information in some form (tabular, points in a reasonably readable figure, or a histogram of grouped values between specific cut points). Data are not included from source papers that only give summary statistics such as means and standard deviations, because these preclude critical assessment of the likely form of the distribution (e.g., normal; lognormal; mixture of lognormals; truncated normal).  The source references for the papers contributing to the database on human interindividual variability in enzyme activity levels are provided in Appendix 3A.

Log(GSD) values are used as our principal summary statistic. Many of the individual data sets are reasonably well described by lognormal distributions; however, it is not the case that all the individual data sets are lognormally distributed.  Therefore, coefficients of variation (CV’s) are also reported for each individual measurement in the Excel spreadsheets (Appendix 3B).  The CV is most directly useful when the parameter is assumed to be normally distributed.  The log (GSD) or the Log{log(GSD)} are the summary units for all analyses reported here, but the CV’s are also included for each entry in the data base.  A breakdown of the database by the apparently best fitting distributional form is discussed in Section 3.2.3.  

3.2.2 Criteria for Inclusion/Exclusion of Studies and Size of the Database

An existing older database (described in our Task 2 report) yielded 20 records judged to be useful after review and updating.  An initial National Library of Medicine literature search for the keywords “vmax interindividual human” provided a starting point of 69 papers.  Approximately 1/3 of the papers from this original search turned out to meet the criteria for inclusion into the database. As in previous work, to qualify for the interindividual variability database, papers must provide individual data (in a table, histogram, or figure with readable points) for at least five people.  The people studied must not have been subject to treatments known to alter enzyme levels to a greater extent than would be present in a normal population, and samples must be collected within a short enough period after death that post-mortem declines in enzyme activity are unlikely.  (Generally this should be tissue samples collected from organ donors, normal appearing tissue collected in the course of surgery or biopsies, etc.)  

Anticipating the need for additional papers to supplement this initial search, a targeted review of several papers available from a previous project was conducted.  These papers were all from the journal Drug Metabolism and Disposition and focused on in vitro studies for the p450 (CYP) enzymes.  The papers were visually screened for useful individual data, as the original database only reported summary statistics.   A secondary goal during the database development  was to supplement the database with enough information to get 3 entries for each of the main  enzymes of interest.  For example, for CYP 2E1, the goal would be to have at least 3 entries  (log (GSD) values) for either activity or Vmax/Km.  This goal was met for most enzymes in the activity category.  Over 116 papers with less than 5 individuals, only summary statistics, inhibition studies or difficult to read bar graphs were excluded from the compilation.

The originally conceived goal was to at least double the size of the preexisting databases.  This goal was exceeded.  The database currently contains 122 data lines, with 66 entries for Activity, 16 for Km, 22 for Vmax, and 18 for Vmax/Km variability observations.

3.2.3 Data Collection and Initial Analysis

Data from individual studies that met the collection criteria were compiled into a Microsoft Excel workbook.  If the data were displayed in tables, this information was simply transferred.  If the data were presented in the form of scatter plots, bar graphs or some other form where data-points could easily be read, the program “Datathief III” was used (vand der Lann and Huyser 2005) to extract the underlying information in numerical form.  This involved scanning the chart using the software to read the points off the graph.  The software then converted the points to tabular form.  Summary statistics calculated from these data include the mean, standard deviation, and CV, as well as the mean and standard deviation (log GSD) of the log transformed data.  If individual Km and Vmax data were given, the Vmax/Km ratio was calculated.  Vmax/Km ratio was not calculated from summary statistics.  This ratio was sometimes reported by the study authors directly for the individual subjects as intrinsic clearance.


Probability plots were constructed for each dataset with and without log transformation to assess which distributional form best describes the data. In this type of plot, the Z-Score
 is the inverse of the number of standard deviations above or below the median of a cumulative normal distribution, where the fractile of the distribution for each point is determined only from the order of the data points, using the formula of (Cunnane 1971): 

Fractile = (I – 3/8)/(N + 1/4)                                                                                (3.1)

Where I is the order of each entry in the data set, arranged from lowest to highest values, and N is the total number of values (including any non-detects).

Based on these probability plots a determination of the best fitting distribution of the data was made.  For example, if the log transformed data plotted to show a straight line with points relatively randomly distributed about the regression line, and a high R2 value, the data were considered to be reasonably well described by a lognormal distribution. The determinations of distribution for the individual study datasets are reported in Table 3.2.  It can be seen that the majority of the data for each parameter was found to be well described by lognormal distributions.  This result was expected from prior work (Hattis 1996; Renwick and Lazarus 1998; Hattis, Banati et al. 1999a; Dorne, Walton et al. 2002; Hattis, Baird et al. 2002).

3.2.4 Description of Liver Fractions Commonly Used for Different Kinds of Enzyme Activity Measurements

In vitro preparations to study xenobiotic biotransformation in the liver are prepared in a variety of ways. Each type of preparation provides different information.  Some of these preparations include liver slices, liver microsomes, S9 fractions, intact hepatocytes and purified or expressed enzymes.  Figure 3.1 is taken from the BD Biosciences website and is a good description of the common technique used to make the preparations from which measurements of enzyme activity summarized in this database are taken. Studies conducted with human liver microsomes are often used measuring the activity of the P450 enzymes.  For studies measuring the Phase II enzymes, depending on the substrate targeted, the microsomal fraction, S9 fraction or the cytosolic fraction is used.  

Each liver preparation has particular uses.  “Liver microsomes” are in one sense artifacts of the centrifugation process and are not found in intact cells.  They are closed vesicles which contain fragments of endoplasmic reticular membrane.  Microsomes contain Cytochrome P450 enzymes (CYP’s), the flavin containing monooxygenases (FMO), and the UDP-glucuronyltransferases. (Venkatakrishnan, Moltke et al. 2001).

The S9 fraction refers to the liquid that results from the first centrifugation step (the microsomes have not yet been separated out). The S9 fraction will contain not only the enzymes found in microsomes, but also the phase II conjugation enzymes found in cytosol.   

The cytosol is the fraction remaining when the microsomes are separated out.  The majority of the Phase II enzymes are found in this fraction.

Isolated hepatocytes (a specific type of liver cell) are useful to study biotransformation of xenobiotics which may occur by more than one enzyme system.  They are whole cells, rather than a portion of a liver cell.  All studies are conducted in liver homogenate fractions such as microsomes, cytosol or S9 fraction.
3.2.5 Classification of Data into Enzyme Categories 

The entries in the database are grouped for analysis by the enzyme class or specific enzyme responsible for the measured activity as reported by the authors of the source papers. In the case of some of the older papers, the enzyme may not have been known at the time or reported in the paper.  In this case, the enzyme characterization was therefore verified and updated. 

In the in vitro human variability data set, each measurement of the pharmacokinetic parameters is attributed to a particular enzyme where possible.  Data collected on the pharmacokinetic parameters in the inter-individual portion of the analysis is limited to studies done in liver tissue, and the majority of the pharmacokinetic activities measured can be attributed to either the Phase I or the Phase II enzyme.  In most cases, the experimental conditions and the metabolite measured provide enough information for conclusions about which enzyme is primarily responsible for the formation of the measured metabolite. In the majority of cases the authors’ conclusions have been used for enzyme assignment.  In cases where there was no enzyme assigned by the study authors, or the assignment was judged to be questionable, a literature search was conducted on the drug/chemical under evaluation in order to determine which enzyme should be assigned.  Goodman and Gillmans The Pharmacological Basis of Therapeutics Tenth Edition (Hardman and Limbird 2001) as well as the primary literature were consulted to verify enzyme assignments.  It was also verified that enzyme assignments agreed with that of the authors of other source papers if the drug/chemical was already contained in the database.

 In cases where more than one enzyme is involved with the metabolism of the drug or chemical, if one enzyme is clearly responsible for a specific metabolite and it is this metabolite for which the pharmacokinetic parameter is being measured, then this enzyme is assigned.  If there is more than one enzyme involved in the metabolite formation, but it is known to be metabolized by the P450 system, it is assigned to the category “CYP Mixed”.  If the enzyme is not identified in the study and could not be identified by a subsequent literature search, it is assigned to “Unknown”. 

Generally, in determining which enzyme is responsible for the formation of specific metabolites, certain types of experiments are run.  These include (1) correlations between the amounts of CYP isoform activities (usually done with a series of probe substrates in microsomes) and metabolite formation from the parent chemical in question, (2) inhibition studies, where an inhibitor is used to identify the relative contribution of a specific CYP to the reaction studied, and (3) studies done in microsomes containing specific recombinant human liver CYP isoforms synthesized in tissue culture cells expressing only the products of a particular CYP gene.  While it is likely that often no individual enzyme is responsible for 100% of the formation of a specific metabolite, the characterization reported here aims to capture the enzyme responsible for the majority of the metabolite formation.  In order to be assigned a specific enzyme, at least two of the three types of analyses described above were generally run by the authors; and in many cases all three types of experiments were done.  If no enzyme type was assigned by the authors, at least two additional sources were consulted, unless this chemical was already assigned an enzyme in the database.  These enzyme assignments served as the basis for pooling studies together in the analysis.  Enzyme subtypes were combined for the purpose of analysis when enough data was not available to analyze them separately.  For example, drugs classified as CYP 3A, CYP3A4 or CYP3A4/5 substrates were combined under the category “CYP3A4”.  For analysis purposes, drugs classified as CYP 1A1 and or CYP1A2 were included together in the category CYP1A1/2.

Table 3.3 reports the numbers of interindividual variability observations derived from measurements in major aggregates of the enzyme categories described above.  
3.3 Analysis of Factors That Could Bias Measures of Variability

3.3.1 Potential Effects of Liver Storage Conditions on Measures of Variability

Because different enzymes may differ in their sensitivity to post-mortem changes, the intention during data collection was to document cases where the investigators evaluated the rates of postmortem changes in activity levels, and develop criteria for acceptance accordingly. There was a barrier to this effort.   It turned out, where information was given in the papers, that in almost all of the cases, either liver samples had been frozen, the microsomes had been frozen prior to analysis, or both.  

It has been documented that liver enzymes do lose some of their activity with freezing of liver tissue.  The various P450 enzymes have been shown to decrease in activity between 20% and 40% with initial freezing (at -80 ºC) of the liver tissue and then remain stable while remaining frozen for extended periods of time (Pearce, McIntyre et al. 1996).

As these studies are becoming more common, it was found that many of the sources of liver tissue or microsomes themselves are commercial companies and very little detail is often given in the papers about the origins of the tissue. There have been studies on their storage conditions in general, documenting how enzyme activity changes with various length of storage.  This research has been published and is further reported on below (Pearce, McIntyre et al. 1996) and (Yamazaki, Inoue et al. 1997).  

3.3.1.1 Yamazaki et al (1997) Study

In the Yamazaki study, portions of frozen livers from 6 organ donors were divided into two groups with liver tissue from all six donors represented in each group.  One group of liver portion remained frozen for one month, and was then used to prepare microsomes.  The second group of liver portions remained frozen for 5 years, and was then used to prepare microsomes.  A major shortcoming of this study is that there was not a control group of “fresh” liver tissue--that is, tissue that had never been frozen.  

Total p450 content (nmol/mg protein) was reported not to differ between the two groups (0.43± 0.11, 1 month group) vs. (0.39 ± 0.11, 5 year group).   The relative level of P450 content to P420 content was measured in both groups of microsomes and reported by the authors to be “essentially the same in both groups”. 

Summary statistics for enzyme activities for the 6 organ donors (means and standard deviations of enzyme activity as nmol products formed/min/mg protein) are reported for 7 probe substrates by the authors.  An approximation formula exists to calculate the log (GSD) from such summary statistics.  Using the formula
, (Equation 3.2) described by Finney and reported in Aitchison and Brown {(Aitchison and Brown 1957) and (Finney 1941)}, the log (GSD) for each analysis conducted in the Yamazaki study was calculated.  A paired t-test was conducted on the log(GSD)’s from the 1-month and 5 year time storage periods.  No statistically significant difference was found between the two groups (p = 0.19).  The study authors also concluded that there was no significant difference between the two groups, but do not give the details of the statistical analysis used.  The log (GSD)’s for each enzyme are plotted vs length of storage in Figure 3.2.  
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In a second analysis in the paper, the authors assess the effects of storage of the liver samples at room temperature for 6 hours prior to refreezing for 1 week.  This treatment led to an average 90% decrease in p450 protein levels compared to the control group.  This experiment was meant to reflect poor handling of liver samples.  The activity data from this experiment are displayed in bar graphs by the authors.  It was not possible for us to get an accurate reading of the datapoints from those graphs utilizing Datathief.
   Briefly, the results displayed suggest that CYP1A2 activity appears to disappear entirely, CYP 3A4 activity is retained, CYP2A6 activity appears to become increasingly variable and the other enzymes decrease significantly in activity when mistreated in this way.  It is not possible to quantitatively assess the effects this storage at room temperature would have on inter-individual variability.

Given the results of this paper, it appears that once a liver is frozen, the length of time it remains frozen does not significantly affect the measures of variability in the microsomes subsequently made from that liver.  It appears, however, that storage of the livers at room temperature for even a few hours does significantly affect the results of activity and, potentially, activity variability measurements.

3.3.1.2 Pearce et al. (1996) Study

Pearce et. al., (1996) prepared microsomes from 10 liver tissue donors.  It appears from the study description that 8 of these liver samples arrived at the lab frozen, and two “fresh”.  It is not known if the two described as “fresh” were subsequently frozen prior to preparing the liver microsomes.  A total of 9 drugs measuring the activity of 8 enzymes were tested at three time periods “1992”, “1993”, and “1994”.  These results are reported by the study authors in bar graphs.  Datathief was used to approximate the individual activity readings for each individual microsome and time-point.  Log (GSD)’s were then calculated for each enzyme and time period.  These results are plotted in Figure 3.3.

A t-test was performed on the ‘1992” log (GSD) data vs. the “1994” log (GSD) data.  No significant difference was found between the two groups.  This is consistent with what the authors report for the changes in enzyme activity overall.  An ANOVA
  test for trend of time on the log GSD’s of each time period was also not statistically significant (p=0.35).

The results of this study do not indicate a statistically significant change in the measure of human variability with the freezing of microsomes.  While it does appear that the variability increases slightly for most of the enzymes across the time points, the differences between 1992 and 1994 were not statistically significant.  There is a great deal of scatter in the data.  For the enzyme CYP2D6, the variability appears to increase in the Yamazaki data, but decrease in the Pearce et al. data.  Therefore, consistent with the original study authors’ conclusions, the available data tend to suggest that we cannot isolate any specific enzyme types where the variability data for the liver microsome data we have compiled are likely to be appreciably distorted by post-mortem changes in the livers obtained from different people.  The information available, however, is not sufficient to conclude that differential post-mortem effects are not present to some degree.  In our judgment, if there is an effect not picked up in these two studies, it is likely that the majority of the microsome preparations purchased through commercial sources would be affected by this problem.  This possibility is explored in detail in the next section.

3.3.2 Analysis of Log (GSD)’s by Disease State and Liver Tissue Source

It was hypothesized at the onset of the study that the source of the liver tissue may affect the measure of inter-individual variability.  Pharmacokinetic parameter estimates from tissue obtained from healthy liver donors with the microsomes subsequently prepared by the independent researchers may have different sources of experimental error introduced into their measurements than readings taken from commercially purchased microsomes.   Some of the studies included in the data base were performed on tissue from liver biopsy patients or otherwise “unhealthy” donors.  It was hypothesized that these donors may have had altered liver enzymes due to their disease states, although the criteria for inclusion in the database was that “normal” liver tissue be used for the estimate of pharmacokinetic parameters, even if this tissue came from an “unhealthy” donor.  Below is a description of an analysis to assess the effects of liver source and condition on the measures of inter-individual variability in the database.  Briefly, no statistically significant differences in variability are apparent between our categories of liver sources.

It is interesting to note, that one particular microsome preparation (HHM50) with high CYP 2E1 activity, appeared in two unrelated papers (Cantroeggi, 1997 and Seaton, 1995).  It appears that this microsome sample was from the same three year old child and purchased from the International Institute for the Advancement of Medicine.  The supplier’s website was consulted, and a call was placed to try to find out how many labs received microsomes from the same individual and other related questions that could affect measures of inter-individual variability.  Attempts were made to obtain as much information as possible about their sample storage and processing procedures.  Unfortunately, the company reports that they no longer provide this type of service to independent labs and no information was readily available on previously distributed microsome preparations.

Several labs also purchase microsomes from Gentest, a division of BD Biosciences.  With this in mind, as the papers were evaluated, we looked for other commonalities between the tissue sources used in the individual papers, but no other examples were apparent.

Fields are included in the database to document liver source and condition, enabling further exploration of the potential effects of these sample characteristics.  Data were divided into 4 categories based on the study authors’ description of the source of the liver tissue used for analysis.  The categories are:

1) Designation “Healthy Donor”

This category is used as the reference in the regression analysis.  This category consists of liver tissue that originated from organ donors described as healthy.  The tissue arrived at the research lab as intact whole liver tissue, usually frozen. The microsomes, cytosol or other media were subsequently prepared in house by the researchers.  Liver donors in this category were reported as generally healthy, and usually died due to some sort of trauma.  Care was taken by the researchers to exclude tissues where the donor received enzyme altering drugs before death although most studies gave little detail of this nature.

2) Designation “Commercial Source ”

Liver preparations in this category were purchased from a commercial source.  Microsomes, cytosol etc. were already prepared before arrival at the research lab--generally have come frozen at -80O C.   The length of time the preparations were frozen is usually not given nor is information provided about the original donors. 

3) Designation “Diseased Donor”

Liver tissue is prepared as in the healthy subjects, but is not from healthy subjects.  The source of this tissue is either from livers classified as “unsuitable for transplantation”, liver biopsy samples for liver cancer where healthy tissue was reportedly selected for analysis, or from patients otherwise not classified as healthy liver donors.  Again, this information is given sparingly in many papers.  The types of classifications in this category are itemized in Table 3.5.  In total, there were 32 data-points in this category from 9 papers.

4) Designation “Mixed Source”

When a study contained livers from a combination of sources, it was placed in this category. In all cases but one, they contained a combination of the first two categories.  There are 9 Log (GSD) values from 3 studies that fall into this category.  They include 7 Phase I enzymes and 2 Phase II enzymes.  In regression analyses that contained liver condition/source as a categorical variable, records classified in liver condition Category “Mixed Source” were eliminated due to the small number of studies in each category when this was further subdivided by Activity, Km, Vmax and Vmax/Km in the analysis.

Tables 3.5-3.7 further detail the distribution of studies and data points among the different categories.  Table 3.5 also provides additional detail on what is meant by the term “unhealthy” liver donor.  

The Log (GSD)’s for the Activity Data of each of the liver source category are displayed in the boxplots in Figure 3.4.  Boxplots for the Km, Vmax, and Vmax/Km data for the Log (GSD)’s and the Log [Log (GSD)]’s as well as the Activity Data Log [Log (GSD)]’s are displayed in Appendix 3C.  These boxplots that the log (GSD)’s from measurements in each of the three categories are relatively similar and do not indicate major systematic differences in variability due to the sources of liver tissue used.

This finding was checked more formally with an ANOVA
 analysis of the Log [Log (GSD)]
’s weighted by (N-1)
 to determine if the liver categories are significantly different from each other. The healthy donors served as the reference category in this analysis.  The results of this reinforce the conclusion that the categories are not detectably different from each other (Activity (P>0.46), Km (P>0.25), Vmax (P> 0.43), Vmax/Km (P>0.78).  This result is maintained when additional explanatory variables are added to the model (Enzyme Category and/or Study Year).   We have therefore included all of the data in the subsequent analyses of variability without eliminating, controlling for, or stratifying the data based on tissue source.

3.3.3 Analysis of Log (GSD)’s by Study Year

In the inter-individual database, only studies conducted from 1985 to the present were included.  To determine if the year the study was conducted had a detectable effect on the variability observed, study year was incorporated into a series of regression models.  There could conceivably be such an effect, for example if study methods tended to improve over the years.  The results discussed here treat study year as a categorical variable, sorted into groups listed in Table 3.7. 

An ANOVA analysis (on the Log [Log (GSD)]’s) was conducted with the study year category as the only variable in the model, with a weight of (N-1) where N = number of subjects in the study.  Study year was not found to be a statistically significant predictor for the amount of inter-individual variability for any of the pharmacokinetic parameter datasets (Activity (p> 0.39), Km (p> 0.47), Vmax (p>0.05 or Vmax/Km (p>0.37).  For Vmax, the ANOVA results were close to significant, but this was most likely a random fluctuation attributable to the number of comparisons we have made and to the fact that there were only 2 studies in the 1991-1995 category.  Overall, as can be seen in the box-pots in Figure 3.5 and Appendix 3C, there does not seem to be a systematic pattern of change in observed inter-individual variability with the year in which the study was conducted.  All the subsequent regression analyses were therefore conducted without including a variable for study year and all data after 1985 were included in the summary statistics and regression analyses.
3.3.4 Age of Study Participants and Sample Size of Individual Studies

Two other factors that could conceivably affect the observed variability are the number of subjects in each study and the age range of the subjects included in the individual studies.  As indicated in Figure 3.6, the majority of the studies in the database contained observations of 10 subjects or less.  This is most likely due to the selection criteria of including only studies which published the individual data.  Studies with larger numbers of liver samples most likely publish only summary statistics.  However, at least in theory, for lognormally distributed data, a standard deviation of the log-transformed enzyme activity parameter should not be appreciably biased by sample size; although estimates based on smaller samples will certainly tend to be less precise than estimates based on larger samples. Simulation studies based on random samples of 10,000 trials for each sample size between 5 and 50 (to be described more fully elsewhere) indicate that the traditional formula for standard deviations yields results that are biased low.  The bias is about 8% at a sample size of 5 and declines to about 1.8% and 1.0% with sample sizes of 20 and 40, respectively (Figure 3.7).    

A majority of the studies unfortunately did not give detailed descriptions of the donors of the liver tissue used; therefore it was difficult to accurately estimate the age range of participants.  From the information given in the papers that do provide this information, our impression is that the vast majority of subjects contributing the tissues that were studied were between the ages of twenty and sixty-five, with very few children represented.  This is a shortcoming in the database, and will most likely lead to an underestimation in the true measures of variability across the population.  However, this can be addressed through PBPK modeling, by incorporating adjustments for the lack of children and very elderly people in the database, perhaps based on available in vivo observations.

3.4 Results of Pooling Log (GSD)’s Within Categories

Since the majority of the datasets were found to be best described as lognormally distributed, the log GSD is the preferred measure for this analysis.  CV’s are also reported in the database for reference or future analysis.  Table 3.9 provides a convenient reference for developing an intuitive understanding of the meaning of different amounts of variability as indicated by Log(GSD) estimates.  It also places various Log(GSD) levels in the context of the benchmark 95% percentile/median and 99%/median ratios highlighted in the IPCS guidance. It should be reemphasized, however, that the in vitro Log(GSD)s reported here are not directly interpretable as final measures of the inter-individual pharmacokinetic variability that would be seen in vivo; estimates of in vivo variability from these inputs require processing via PBPK models..  

3.4.1 Calculations of Pooled Log (GSD)’s and Corresponding Confidence Intervals

The combined log(GSD)’s within enzyme groups were calculated using Equation 3.3 which was used in prior efforts to combine variability data from different sets of observations (Hattis, Banati et al. 1999b). 
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We also use previous methods (Hattis, Banati et al. 1999a) to calculate uncertainty variances for the pooled log [log (GSD)], and corresponding 2.5%-97.5% confidence intervals (- or + 1.96 standard deviations).  The results are displayed in Tables 3.10-3.13 for various enzyme categories.  In addition to the studies used in the analysis above, one additional study with Km and Vmax and therefore Vmax/Km values for CYP 2E1 has recently been brought to our attention (Lipscomb, Garrett et al. 1997).  These values are included in the tables and discussion below

3.4.2 Results and Discussion 

It can be seen in Table 3.9 that there is some overall tendency for the “Phase I” enzyme group to have modestly more variability than “Phase II” enzymes, although this potential generalization is hampered by the fact that we have only single observations of Vmax, Km and Vmax/Km variability information for the phase II group.  When the data are broken down further by specific enzyme categories (Tables 3.9-3.14 and Figures 3.8-3.12) perhaps the most striking observation is the breadth of the un-weighted findings of individual observations (represented in the box plots), particularly for glutathione transferases (which have known important polymorphisms) and some CYP enzymes.  By contrast, the overlapping ranges of uncertainty around the statistically weighted central estimates provided in the tables emphasize that, although the data assembled to date can provide a useful starting point for assessing likely ranges of variability in enzyme activities, there are few cases where categorization by predominant enzyme type alone will allow the risk assessor to be confident that human inter-individual variability will be relatively high or low compared to other enzyme categories.

The far right columns of Tables 3.9-3.14 list the “Fold” value
 for the pooled log (GSD) corresponding to the ratios of 95/50th and 99/50th percentiles for the median log (GSD) entry in that particular row.  These are displayed to facilitate comparisons with the default factor of “3” suggested by the IPCS guidelines.  While these ratios are derived a translation of the log (GSD)’s from the in vitro data directly they are perhaps useful for discussion and comparison purposes.  To most accurately determine the measure of variability due to the pharmacokinetic data, the results presented here should be incorporated into pharmacokinetic models that incorporate competing metabolic and physical elimination processes for individual substrates as well as the variability in those parameters.

Another interesting observation is that in general, the Activity measurements tend to be less variable than measurements for the three Michaelis-Menten parameters.  Also, the indicated overall variability in the Vmax/Km ratios appears to be anomalously less than the variability in Vmax and Km parameters individually.10 {The anomaly appears because if Vmax and Km were independent lognormal variables, their variances [the squares of the Log(GSD)s] should add to yield the variance of the Vmax/Km ratios.   This should cause the Log(GSD)s for Vmax/Km ratios to be distinctly larger than the Log(GSD)s for the components.  The fact that this is not may have resulted either from one or both of the following:

(1) Positively correlated estimation errors in Vmax and Km arising from the statistical methods used for estimating both parameters from the same data (e.g., double reciprocal plots such as Lineweaver-Burk Plots vs. non-linear regression) (Fuchs and Gessner 2001),  One possible circumstance that could lead to correlated estimation errors is if many of the experimental data points were at low concentrations relative to Km.  Data points that are low in relation to Km may yield relativelygood information on Vmax/Km ratios, but considerable instability in estimating  the absolute value of Km.

(2) Positively correlated real variability in Vmax and Km, perhaps arising from homeostatic processes that adjust the number of enzyme molecules made (affecting Vmax) according to the needs for metabolic processing at low doses affected by the tightness of binding of individuals’ enzyme variants for specific normal substrates such as dietary constituents needing detoxification (affecting Km).  This would tend to produce a relative similarity among people in low dose processing rates that is reflected as relatively less variability in Vmax/Km ratios than would otherwise be expected.

Analysis of the studies in the database that contain values for both Vmax and Km allow for the estimation of the correlation between these two parameters.  Overall, after normalizing  each study’s data by the mean log of the respective parameters, the correlation between log (Km) and log (Vmax) is 0.46  (Figure 3.13)  The regression coefficient for the within-study correlation between [log(Km)-study mean log(Km)] and [log(Vmax) – study mean log(Vmax)] is highly significant statistically (P < 0.001)  The individual study correlation values are listed in Table 3.15. It can be seen in several cases the correlations are very high (0.9 and above).  Close examination of these cases may yield more information about the likely overall reason for the correlation between Log(GSD)s for Vmax and Km.

In order to assess whether this correlation was associated with statistical techniques used to estimate Vmax and Km, the studies were grouped into those that used non-linear regression and those that used graphical techniques.  A statistically significant difference was not found between these groups based on our limited sample of 14 Vmax and Km pairs in studies where the estimation method used was reported in the source paper.  The mean correlation coefficient for the group that used plotting techniques is 0.53; the comparable mean correlation coefficient for those that used non-linear regressions or similar curve fitting is 0.63.  A T-test for the difference between these means did not indicate statistical significance (p = 0.66).  Additional experimentation and parallel analyses of the same data by different estimation methods will be needed to sort out contributions to the correlations between Vmax and Km interindividual variation from the possibilities given in (1) and (2) above, or other explanations. The individual study correlation values are listed in Table 3.15. It can be seen in several cases the correlations are very high (0.9 and above).  Close examination of these cases may yield more information about the likely overall reasons for the correlation between Log(GSD)s for Vmax and Km.

3.5 Use of Measurements of Enzyme Parameters and Their Variability as Inputs to PBPK Models 

The Activity, Vmax, and Vmax/Km  parameters in our database are all provided by the source papers normalized to mg of microsomal, cytosolic, or S9 protein.  However PBPK models generally require estimates of these types of parameters at the level of the whole liver (or other compartment in the model).  The issues therefore arise

(1) How much human interindividual variability is there in these normalizing units themselves? and 

(2) Does this variability among people in the normalizing units add to or subtract from the observed variability in the normalized parameters?  If there is no correlation between individual people’s enzyme activities (or Vmax or Vmax/Km ratios) and their amounts of microsomal protein per liver weight or per whole liver, then the true interindividual variability in enzyme activities per whole liver will tend to be larger than the observed Log(GSD)s for enzyme activities per unit microsomal protein assembled in our project.  On the other hand, if there is a negative correlation between the normalizing parameters and individual enzyme activity levels (that is, if people with greater amounts of microsomal protein per liver tend to have less enzyme activity per unit microsomal protein) then the variability needed for inputs of enzyme activity per unit liver weight or total liver could be less than the observed Log(GSD)s for enzyme activities per unit microsomal protein. 

Unfortunately, the data presently available in the scientific literature allows only a partial quantitative analysis of the first of these issues. There does not yet appear to be a body of individual human data in which enzyme activities per unit microsomal protein, microsomal protein content per unit liver weight, and overall liver weights have been assessed for the same set of people.  The latter would be required to provide an empirical basis for addressing the second question above.

 Table 3.16 shows the log (GSD)s calculated from observations of human interindividual variability of specific P450 protein, and “Total P450” as measured per mg of microsomal protein.  These values are reported only for studies contained in the inter-individual variability database reported here.  Overall, the variability in total P450 content is reasonably modest compared to the variability in enzyme activities per unit microsomal protein assembled in the database; however it can be seen in Table 3.16 that the interindividual variability in individual CYP enzymes is often substantial—quite comparable overall to the variability in measured enzyme activities.  In Section 2, Table 2.10 provides estimates from various studies for the overall amounts of microsomal protein of human liver.  

Studies conducted in isolated hepatocytes or liver microsomes are found to give the best estimates of metabolism in vivo while liver slices give less accurate estimates (Lipscomb and Kedderis 2002).  Preference is given by some authors to the isolated hepatocyte model as it is more representative of in vivo conditions than microsomes, but both models still require extrapolation to in vivo conditions (Lipscomb, Teuschler et al. 2003).  The database assembled for this project drew on the predominant source of such information in the current scientific literature, which is based on measurements in microsomes rather than hepatocytes.  Lipscomb (1998) provides measures of pharmacokinetic parameters for trichloroethylene made in hepatocytes.  Analysis of these values indicates that they are, if anything, more variable than similar measurements made in microsomes (Table 3.17). 

In order to translate the results of in vitro enzyme measurements into estimates of in vivo PBPK parameters, Lipscomb (2002) offers several suggestions for types of information that should be assessed:

1. Information about target organ and target cells

Mechanism of action

Metabolic species responsible for toxicity

2. When a metabolite is responsible for toxicity:

Identity of metabolite(s)

Enzyme(s) responsible for metabolite formation 

3. The kinetic mechanism of metabolism 

Information on the rate expressed per unit specific enzyme if possible.

Information about the expression and variance of the metabolizing enzyme in liver tissue.  

4. A PBPK model must be available.

The parameters needed to compare rates of metabolism measured in isolated hepatocytes or microsomes, such as number of hepatocytes per gram of liver and amount of microsomal protein normally found in the liver have been quantified in a few studies to date and discussed in section 2.

The ranges in values given for activity, Km, Vmax and Vmax/Km, as well as the correlation between these parameters can be used to model the Vmax and Km values for a particular contaminant when this value is unknown.  If the enzyme (or enzyme category, such as Phase I or Phase II) responsible for the metabolism of a particular contaminant is known, the variability quantified in the database as reported here can be incorporated into the model in place of the actual Vmax and Km values for the parameter.  The analysis on correlation between Vmax and Km gives the modeler insight on how to treat these parameters.

Metabolic constraints are also important to consider when extrapolating in vitro data for risk assessment purposes.  For example, hepatic blood flow is thought to constrain the effects of the induction for CYP 2E1 for chemicals that are rapidly metabolized by this enzyme (Kedderis and Held 1996).  This effect will be chemical specific, and liver blood flow itself can vary from person to person.  These factors can be taken into consideration when information learned from in vitro measurements is properly incorporated into PBPK models. Several current PBPK models currently use a set value for liver blood flow.  Ideally explicit incorporation of variability for this and other key parameters should be incorporated into the model to fully characterize the likely extent of interindividual variability in metabolic rates and resulting internal exposures to parent compounds and their active metabolites.

The paragraphs above are not a complete discussion of the requirements to build a PBPK model.  Other factors not discussed in this report may be important to consider, such as substrate binding and cofactor concentrations in in vitro vs in vivo conditions (Obach, 1997).

3.6 Conclusions

A database of human variability in in vitro measurements of enzyme parameters has been created that is of potential use to PBTK modelers.  This database contains 122 data-points for the in vitro measurements of Activity at specific substrate concentrations, Km, Vmax and Vmax/Km ratios for both the Phase I and Phase II enzymes.  The Log (GSD) is used as the summary statistic to quantify inter-individual variability from the specific datasets.  There is some tendency for measures of interindividual variability in activities of the Phase I enzymes to have greater variability than the Phase II enzymes.   Central estimates of measures of human variability for a variety of enzyme groups (particularly some CYP and Glutathione-S-transferase enzymes), when translated into 95/50th percentile ratios, often exceed the factor of “3” allocated by IPCS for the pharmacokinetic uncertainty factor.  (However it should be stressed that the in vitro Log(GSD)s reported here are not directly interpretable as final measures of the inter-individual pharmacokinetic variability that would be seen in vivo; estimates of in vivo variability from these inputs require processing via PBPK models before they can be used to assess data-derived uncertainty factors according to the IPCS recommendations.)  Measures based on Vmax/Km ratios were found to be more variable than Activity at specific substrate concentrations, but were not as variable as might be expected from the variability in the underlying Vmax and Km parameters considered separately.   Further inquiry indicated that within studies individuals with relatively high values of Log(Vmax) tended to also have relatively high values of Log(Km). This kind of correlation may have resulted in part from correlations in estimation errors that could have resulted in part from the fact that data points at low concentrations relative to Km provide more information about Vmax/Km ratios than about the absolute value of Km. 

In additional analyses, study year, storage condition of the liver tissue, and source of liver tissue were not found to be statistically significant predictors of the measure of inter-individual variability.

If the criteria for study inclusion into the database were relaxed to allow inclusion of records based on summary statistics where pharmacokinetic parameters are collected for more than 5 individuals, rather than only studies which report individual data-points, the size and coverage of the database could be expanded.
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Table 3.1

Phase II  Conjugation Reactions
	Reaction
	Enzyme
	Compound used to form Conjugate

	Glucuronide Formation
	UDP-glucuronosyl transferase
	Uridine diphosphate glucuronic acid (UDPGA)

	Sulphate Conjugation
	3’phosphoadenosyl-5’-phosphosulphate (PAPS)
	Sulphotransferase

	Glutathione Conjugation
	May be enzyme catalyzed (at least 6 glutathione-S-transferases)

or a spontaneous chemical reaction
	(-glutamylcysteinylglycine

(glutathione)

	Acetylation
	Acetyltransferases (several, with known polymorphisms)
	Acetyl CoA

	Conjugation with Amino Acids
	Ligases or acyl CoA Synthetase, N-acetyltransferases
	Amino Acids

	Methylation
	methyltransferases
	S-adenosyl methionine


Table 3.2

Apparent Data Distributions by Pharmacokinetic Parameter

	Parameter
	Equally well described by normal or lognormal) distributions
	Better described by normal distribution
	Better described by lognormal distribution
	Best described by a truncated normal distribution
	Best described by a mixture of normal or lognormal distributions
	Total

% 

	Activity
	8%
	18%
	64%
	6%
	2%
	98%

	Km
	6%
	25%
	67%
	-
	-
	98%

	Vmax
	5%
	30%
	60%
	5%
	-
	100%

	Vmax/Km
	0%
	6%
	94%
	-
	-
	100%


Table 3.3

Overview of the Human Interindividual Variability Database by Major Enzyme Categories

	Major Enzyme Category
	Description
	Number of Datapoints

	ZCYP
	All CYP P450’s
	94

	UGT ALL
	All UGT’s
	8

	GST ALL
	ALL GST’s
	10

	P2Other
	All other Phase II enzymes (excluding UGT’s and GST’s)
	5

	EH
	Epoxide hydrolases
	3


Table 3.4

Description of “Unhealthy Donors”

	Author Description Liver
	Number Papers
	Number Data Lines-

log (GSD) Values

	Livers “Unsuitable for Transplantation”
	3
	6

	Tissue from  patients undergoing partial hepatectomy
	4 (1-metastic tumors)
	11

	Patients with secondary hepatic tumors
	1
	8

	Other Liver Cancers
	1
	3

	Other Diseases (non-hepatic)
	1
	4


Table 3.5

Summary of Log (GSD)’s for “Unhealthy” Liver Donors

	Parameter
	Number of Studies
	Pooled log GSD*

	Activity
	17
	0.253

	Km
	5
	0.564

	Vmax
	5
	0.624

	Vmax/Km
	5
	0.369


Table 3.6

Liver Condition Categories

	Liver Conditions


	Number of Datapoints

	Healthy Donor 
	66

	Commercial Source 
	15

	Diseased Donor 
	32

	Mixed source (commercial and healthy donor)
	9


Table 3.7

Study Year Categories

	Range

YCAT
	Number of Datapoints

	1985-1990
	10

	1991-1995
	43

	1996-2000
	54

	2001-present
	15


Table 3.8

A Scale for Understanding Lognormal Variability--Fold Differences Between Particular Percentiles of Lognormal Distributions

	Log
(GSD)
	Probit slope 
[1/Log
(GSD)]
	Geometric Standard Deviation
	95th/50th Percentile Ratio (1.645 standard deviations)
	99th/50th Percentile Ratio (2.326 standard deviations)

	0.1
	10
	1.26
	1.46 fold
	1.71 fold

	0.2
	5
	1.58
	2.13 fold
	2.92 fold

	0.3
	3.33
	2.0
	3.11 fold
	4.99 fold

	0.4
	2.5
	2.5
	4.55 fold
	8.52 fold

	0.5
	2
	3.2
	6.64 fold
	14.6 fold

	0.6
	1.67
	4.0
	9.70 fold
	24.9 fold

	0.7
	1.43
	5.0
	14.1 fold
	42.5 fold

	0.8
	1.25
	6.3
	20.7 fold
	72.6 fold

	0.9
	1.11
	7.9
	30.2 fold
	124 fold

	1
	1.0
	10.0
	44.1 fold
	212 fold


Table 3.9

Pooled Log (GSD)’s by Enzyme Phase

	Enzyme


	Parameter


	Number of Studies
	Number of Subjects
	Pooled Log (GSD)
	2.5% Lower CI Log (GSD)
	97.5% Upper CI Log (GSD)
	Central Estimate

“Fold” Difference 95/50%a
	Central Estimate “Fold” Difference 99/50th %

	Phase 1
	Activity
	44
	539
	0.29
	0.28
	0.31
	3.0
	4.7

	Phase 2
	Activity
	20
	485
	0.26
	0.24
	0.28
	2.7
	4.0

	Phase 1
	Km
	16
	146
	0.45
	0.40
	0.50
	5.4
	10.7

	Phase 2
	Km
	1
	6
	0.36
	0.19
	0.66
	3.9
	6.6

	Phase 1
	Vmax
	22
	305
	0.39
	0.36
	0.43
	4.4
	8.0

	Phase 2
	Vmax
	1
	6
	0.33
	0.18
	0.61
	3.5
	5.8

	Phase 1
	Vmax/Km
	18
	166
	0.37
	0.33
	0.41
	4.1
	7.1

	Phase 2
	Vmax/Km
	1
	6
	0.18
	0.10
	0.34
	2.0
	2.7


Table 3.10

Pooled Log(GSD)’s by Aggregate Enzyme Categories

	Enzyme


	Parameter


	Number of Studies
	Number of Subjects
	Pooled Log (GSD)
	2.5% Lower CI Log (GSD)
	97.5% Upper CI Log (GSD)
	Central Estimate

“Fold” Difference 95/50% a
	Central Estimate “Fold” Difference 99/50th %

	All Cyps
	Activity
	44
	539
	0.29
	0.28
	0.31
	3.0
	4.7

	All GSTs
	Activity
	7
	73
	0.38
	0.32
	0.45
	4.2
	7.5

	All Other Phase 2’s 
	Activity
	5
	196
	0.22
	0.20
	0.24
	2.3
	3.2

	All UGT’s
	Activity
	8
	216
	0.25
	0.23
	0.27
	2.6
	3.7

	All Cyps 
	Km
	15
	140
	0.46
	0.41
	0.51
	5.6
	11.3

	Epoxide Hydrolase
	Km
	1
	6
	0.16
	0.08
	0.29
	1.8
	2.3

	All GSTs
	Km
	1
	6
	0.36
	0.19
	0.66
	3.9
	6.6

	All Cyps
	Vmax
	21
	299
	0.39
	0.36
	0.43
	4.5
	8.1

	Epoxide Hydrolase
	Vmax
	1
	6
	0.27
	0.14
	0.49
	2.7
	4.1

	All GSTs
	Vmax
	1
	6
	0.33
	0.18
	0.61
	3.5
	5.8

	All Cyps
	Vmax/Km
	17
	160
	0.36
	0.32
	0.40
	3.9
	6.7

	Epoxide Hydrolase
	Vmax/Km
	1
	6
	0.60
	0.32
	1.10
	9.6
	23.5

	All GSTs
	Vmax/Km
	1
	6
	0.18
	0.10
	0.34
	2.0
	2.7


Table 3.11

Pooled Log (GSD)’s by Detailed Enzyme Groups—“Activity” Parameter

	  Enzyme


	Number of Studies
	Number of Subjects
	Pooled Log (GSD)
	2.5% Lower CI Log (GSD)
	97.5% Upper CI Log (GSD)
	Central Estimate

“Fold” Difference 95/50% a
	Central Estimate “Fold” Difference 99/50th %

	Acetylation
	2
	17
	0.43
	0.31
	0.61
	5.1
	9.8

	Amino Acid Conj
	1
	21
	0.16
	0.12
	0.22
	1.8
	2.4

	CYP 1A1/2
	7
	80
	0.34
	0.29
	0.40
	3.6
	6.1

	CYP 2A6
	3
	32
	0.31
	0.24
	0.40
	3.2
	5.2

	CYP 2B6
	3
	32
	0.29
	0.22
	0.37
	2.9
	4.5

	CYP 2C19
	1
	10
	0.35
	0.22
	0.55
	3.7
	6.2

	CYP 2C9
	3
	34
	0.13
	0.10
	0.17
	1.6
	2.0

	CYP 2D6
	2
	22
	0.40
	0.29
	0.54
	4.5
	8.2

	CYP 2E1
	9
	95
	0.30
	0.26
	0.35
	3.1
	4.9

	CYP 3A4
	9
	114
	0.27
	0.24
	0.31
	2.8
	4.2

	CYP 4A9
	1
	10
	0.15
	0.10
	0.24
	1.8
	2.2

	CYP-P450 Unidentified
	1
	31
	0.26
	0.20
	0.33
	2.6
	3.9

	GST
	2
	12
	0.22
	0.15
	0.34
	2.3
	3.2

	GST a
	4
	52
	0.41
	0.34
	0.50
	4.7
	8.7

	GST p
	1
	7
	0.22
	0.13
	0.38
	2.3
	3.2

	GST µ
	1
	7
	0.16
	0.09
	0.28
	1.8
	2.3

	Sulfation
	1
	7
	0.42
	0.24
	0.73
	4.9
	9.2

	UGT
	2
	158
	0.19
	0.17
	0.22
	2.1
	2.8

	UGT 1A1
	5
	156
	0.27
	0.24
	0.30
	2.7
	4.1

	CYP Mixed
	3
	60
	0.19
	0.16
	0.23
	2.1
	2.8

	
	
	
	
	
	
	
	


Table 3.12

Pooled Log (GSD)’s by Enzyme (Km)

	Enzyme


	Number of Studies
	Number of Subjects
	Pooled Log (GSD)
	2.5% Lower CI Log (GSD)
	97.5% Upper CI Log (GSD)
	Central Estimate

“Fold” Difference 95/50% a
	Central Estimate “Fold” Difference 99/50th %

	CYP 2C19
	1
	5
	0.18
	0.09
	0.37
	2.0
	2.7

	CYP 2C9
	1
	6
	0.62
	0.34
	1.14
	10.4
	26.6

	CYP 2D6, EM
	1
	6
	0.15
	0.08
	0.28
	1.8
	2.2

	CYP 2E1
	1
	23
	0.20
	0.15
	0.26
	2.1
	2.8

	CYP 3A4
	5
	37
	0.29
	0.23
	0.36
	2.9
	4.5

	CYP-P450 Unidentified
	3
	43
	0.63
	0.51
	0.78
	10.9
	28.3

	EH
	1
	6
	0.16
	0.08
	0.29
	1.8
	2.3

	GSTT1
	1
	6
	0.36
	0.19
	0.66
	3.9
	6.6

	CYP Mixed
	3
	20
	0.22
	0.16
	0.30
	2.3
	3.2


Table 3.13

Pooled Log (GSD)’s by Enzyme (Vmax)

	Enzyme


	Number of Studies
	Number of Subjects
	Pooled Log (GSD)
	95% Lower CI Log(GSD)
	95% Upper CI Log(GSD)
	Central Estimate

“Fold” Difference 95/50% a
	Central Estimate “Fold” Difference 99/50th %

	CYP 2C19
	2
	15
	0.30
	0.21
	0.43
	3.1
	4.9

	CYP 2C9
	3
	56
	0.24
	0.20
	0.29
	2.5
	3.5

	CYP 2D6
	1
	42
	0.17
	0.14
	0.21
	1.9
	2.5

	CYP 2D6, EM
	1
	6
	0.25
	0.13
	0.45
	2.5
	3.7

	CYP 2E1
	1
	23
	0.22
	0.17
	0.30
	2.3
	3.3

	CYP 3A4
	7
	81
	0.28
	0.24
	0.33
	2.9
	4.5

	CYP-P450 Unidentified
	3
	43
	0.34
	0.27
	0.42
	3.6
	5.9

	EH
	1
	6
	0.27
	0.14
	0.49
	2.7
	4.1

	GSTT1
	1
	6
	0.33
	0.18
	0.61
	3.5
	5.8

	CYP Mixed
	3
	33
	0.89
	0.70
	1.14
	29.1
	111


Table 3.14

Pooled Log (GSD)’s by Enzyme Vmax/Km

	Enzyme


	Number of Studies
	Number of Subjects
	Pooled Log (GSD)
	95% Lower CI Log(GSD)
	95% Upper CI Log(GSD)
	Central Estimate

“Fold” Difference 95/50% a
	Central Estimate “Fold” Difference 99/50th %

	CYP 2C19
	2
	15
	0.39
	0.27
	0.56
	4.3
	7.8

	CYP 2C9
	1
	6
	0.27
	0.15
	0.51
	2.8
	4.3

	CYP 2D6, EM
	1
	6
	0.26
	0.14
	0.48
	2.7
	3.9

	CYP 2E1
	1
	23
	0.25
	0.19
	0.34
	2.6
	3.8

	CYP 3A4
	6
	47
	0.36
	0.29
	0.44
	3.9
	6.7

	CYP-P450 Unidentified
	3
	43
	0.33
	0.26
	0.40
	3.4
	5.6

	EH
	1
	6
	0.60
	0.32
	1.10
	9.6
	23.5

	GSTT1
	1
	6
	0.18
	0.10
	0.34
	2.0
	2.7

	CYP Mixed
	3
	20
	0.44
	0.32
	0.61
	5.3
	10.4


Table 3.15

Correlation Coefficients between Log(Km) and Log(Vmax) Within Individual Studies 

	Study
	Correlation between Log(Km)-mean study Log(Km) and Log (Vmax)- mean study Log(Km)
	Estimation Method

	Kedderis, G. L. and R. Batra (1993)
	0.59*
	Computer Fit 

	Botsch S, Gautier JC, Beaune P, Eichelbaum M, Kroemer HK. (1993).
	-0.06*
	Curve Fitting Program

	Wandel C, Bocker RH, Bohrer H, deVries JX, Hofmann W, Walter K, Kleingeist B, Neff S, Ding R, Walter-Sack I, Martin E. (1998).
	0.34
	Eadie-Hofstee Plot

	Kobayashi, K., T. Yamamoto, et al. (1998). 
	0.98
	Eadie-Hofstee Plot

	Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Hartwell PS, Raisys VA, Marsh CL, McVicar JP, Barr DM, et al. (1994).
	0.95
	Eadie-Hofstee Plot

	Kumar GN, Walle UK, Walle T. (1994).
	0.18
	Lineweaver-Burk Plots

	Lipscomb, J. C., C. M. Garrett, et al. (1997). 
	0.5
	Non-linear “Enzfitter”

	Zhang, W., Y. Ramamoorthy, et al. (2002)..
	-0.2
	Non-linear Regression

	Grace, J. M., A. J. Aguilar, et al. (1998)
	0.3
	Non-Linear Regression

	Yasui-Furukori, N., M. Hidestrand, et al. (2001). 
	0.54
	Non-Linear Regression

	Kohl, C. and M. Steinkellner (2000)
	0.9
	Non-Linear Regression

	Roberts, S. M., R. D. Harbison, et al. (1991). 
	0.88
	Non-Linear Regression

	Roberts, S. M., R. D. Harbison, et al. (1991). 
	0.96
	Non-Linear Regression

	Rodriques A.D. et. al.(1996)
	0.97
	Non-Linear Regression

	Boogaard PJ, Sumner SC, Bond JA. (1996).
	0.86
	Non-Linear Regression (initial values from Eadie-Hofstee)

	Garcia-Agundez et al. (1990)
	0.56*
	Not Stated

	Wu D, Otton SV, Inaba T, Kalow W, Sellers EM. (1997).
	0.22
	Not Stated (Most Likely Plot Estimated)


* Not included in stratified analysis due to uncertainty over method used to estimate Vmax and Km.

Table 3.16

Human Interindividual Variability in the P450 Content of Liver Microsomes

	Study
	P450 Content Measured per mg Microsomal Protein
	Log (GSD)
	Number of Subjects

	Wandel  (1998).
	CYP 3A4
	0.519
	16

	Firkusny  (1995).
	CYP 2D6
	0.210
	8

	Lipscomb (2003)
	CYP 2E1
	0.216
	75

	Botsch  (1993).
	CYP1A2
	0.563
	20

	Botsch  (1993).
	CYP2C
	0.300
	20

	Botsch (1993).
	CYP2D6
	0.384
	20

	Botsch (1993).
	CYP2E1
	0.396
	20

	Botsch (1993).
	CYP3A
	0.277
	20

	Roberts (1991)
	Total P450
	0.070
	6

	Wandel (1998)
	Total P450
	0.075
	16

	Gardner (1997)
	Total P450
	0.128
	10

	Bourrie (1999)
	Total P450
	0.149
	12


Table 3.17

Pharmacokinetic Parameters for CYP 2E1 in Liver Microsomes and Hepatocytes

	Parameter
	Microsome/Hepatocyte
	Log GSD
	Number of Subjects

	Km
	Microsomes
	0.195
	23

	Vmax
	Microsomes
	0.224
	23

	Vmax/Km
	Microsomes
	0.254
	23

	Km
	Hepatocytes
	0.403
	6

	Vmax
	Hepatocytes
	0.296
	6

	Vmax/Km
	Hepatocytes
	0.543
	6


Figure 3.1
Isolation of Different Liver Fractions Used for Enzyme Activity Measurements

[image: image19.png]Liver Tissue

1 Homogenze
3 Highspeed 2lowspeed
centifugation centifugation|

Crtosolic
Fraction | <f— 59 Fraction
Microsomal

Fraction

59 Fraction = Both cytosol and microsomes =
phase I & Il enzymes

Cytosol Fraction = Soluble proteins (phase I
enzymes) = NAT, GST, SULT

Microsomes Fraction = ER membrane proteins
(phase | enzymes) = P450, UGT, FMO




Source : (http://www.bdbiosciences.com/external_files/dl/doc/mkt_lit/salesSheets/live/web_enabled/F05T104.pdf)

Figure 3.2
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Figure 3.3
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Figure 3.4
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Figure 3.5
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Figure 3.6

Overview of the Database by The Number of Subjects Per Study
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Figure 3.7


[image: image25.wmf]
Figure 3.8


[image: image26.png]CELTS

BoxPlots of LogGSD by Enzyme, Phase | Activity Data

o

T
o 18172

T
CYP 206

T
cYP 286

L

o 2cy

Enzyne

o 21

CYP 304

T
CYP Nixed





Figure 3.9
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Figure 3.10
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Figure 3.11
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Figure 3.12
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Figure 3.13
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* By an “enzyme parameter” we mean either a rate of processing at a defined substrate concentration (“activity) or one of the Michaelis-Menten parameters—Vmax, Km, or the ratio of Vmax/Km also sometimes called “intrinsic clearance”.


* These terms refer to the basic Michaelis-Menten framework for describing enzyme catalyzed reactions:


� EMBED Equation.3  ���


Where [C] is the concentration of the substrate, Vmax is the maximum rate of the reaction that is approached at very high concentrations of the substrate, and Km (the Michaelis constant) is the substrate concentration where half of the maximum reaction rate is reached.   The significance of these for risk assessment is that Vmax is the primary factor in determining the rate of the reaction at very high substrate concentrations, whereas at relatively low concentrations (typical for environmental exposures) the rate of the reaction is linear with a rate constant equal to the ratio of Vmax/Km.  


** All logarithms used in our work are “common” (base 10) logarithms, rather than “natural” logarithms (base e).  The two commonly used types of logarithms simply differ by a constant; the difference between them does not affect the basic conclusions of the analysis. 


* Parameter value species i = Constant X (Body Weightspecies i))Allometric exponent


* 83 observations were available for this comparison, rather than the 81 available for the Log(mean) comparisons because theree were two cases where percentiles of the data allowed direct observations of Log(GSD) but not arithmetic means.


* In a stepwise regression analysis, a starting regression is used containing all independent variables to be analyzed.  Variables that do not achieve statistical significance are eliminated in a series of steps until a base set of significant parameters is determined.  Finally a series of regressions are done adding back the eliminated parameters one by one to see if any can be found to add significant explanatory power when combined with the base set.  The ultimate criterion for retention of a parameter was P < 0.1.


** In regression analyses it is important that each group of zero or 1 “dummy variables” have one category that is designated by zero’s for all records—otherwise a singularity is created that prevents the regression from being run.  In the equation all the regression coefficients are implicitly show the influence of each dummy variable condition relative to the reference category in each group.  Thus the meaning of the regression coefficient for “Vmax” in the equation is the mean difference in Log{log(GSD)} for the “Vmax” records from the reference category “Activity” records.


* For the implications of the Log(GSD) values in the context of overall variability and the current IPCS guidance see the discussion of Table 3.8 below.


* This appendix is provided as an excel file titled “App2C—Intspe Data for Reganal.xls”.


* 6 out of 12 cases show P < .05; 3 out of 12 show P < .01; 


* The relative statistical weights assigned to overall groups of enzyme activities normalized to liver microsomal protein are:


Parameter�
All Activities Normalized to Liver Microsome Protein�
All CYP Activities  Normalized to Liver Microsome Protein�
Glucuronidation Activities  Normalized to Liver Microsome Protein�
�
Activity�
5.0E+05�
3.7E+04�
4.6E+05�
�
Vmax�
2.4E+06�
6.6E+04�
2.3E+06�
�
Vmax/Km ratio�
3.0E+04�
1.8E+04�
3.6E+03�
�






* The regressions were done in JMP Version 3.1.6 from the SAS Institute.  As can be seen in the detailed results provided in Appendix 2C, one of the outputs of this program for each weighted regression analysis is labeled “Root Mean Square Error”.  Analysis of this output for simple model data sets indicates that it is actually:





� EMBED Equation.3  ���


where wi is the assigned statistical weight for the i data point, and the number of estimated parameters includes the intercept, all the dummy variables for data sets and species (for a species-specific regression), or the allometric exponent estimate (for an allometric regression).  To calculate the “weighted average RMS error” values given in Tables 2.21-2.27, we first reconstructed the total weighted sum of squares and then divided by the average statistical weight of all the data points before taking the square root, leading (after some algebraic simplification) to:


� EMBED Equation.3  ���


a The equation fit was: 


Log[log(GSD)] = Intercept + Estimate1 * (0 or 1 for Term 1) + Estimate2 * (0 or 1 for Term 2)….


The overall R2 for this model was .37, and the root mean square error was .583.


* This is the antilog of the averages of the log of the individual values.


� The Z-score itself is determined from this fractile of the distribution using the normsinv() command in Microsoft Excel.  In log probability plots constructed in this way, the correspondence of the points to the fitted line in such plots is a quick qualitative indicator of the fit of the individual data to a lognormal hypothesis, and the intercept and slope of the regression line are estimates of the median and standard deviation of the data as transformed.  


� This formula has been shown in unpublished work to systematically underestimate the log (GSD) and therefore bias measures of variability.  A correction to this formula is currently being proposed.  For the purposes of this analysis, the Aitchison and Brown estimation of the log (GSD) is adequate.


� Datathief is graphical data extraction software.  


� ANOVA (Analysis of Variance) tests the differences among a number of groups.  It compares two estimates, the within-group variance and the between-group variance.  A statistically significant ANOVA result as reported here would mean that one of the groups is significantly different from the others. 


� ANOVA (Analysis of Variance) tests the differences among a number of groups.  It compares two estimates, the within-group variance and the between-group variance.  A statistically significant ANOVA result as reported here would mean that one of the groups is significantly different from the others. 


� The individual study log (GSD) values themselves are found to be lognormally distributed, therefore, all regression analyses are conducted on the log [log (GSD)]’s. � ADDIN EN.CITE <EndNote><Cite><Author>Hattis</Author><Year>1999</Year><RecNum>185</RecNum><Suffix>a</Suffix><MDL><REFERENCE_TYPE>0</REFERENCE_TYPE><AUTHORS><AUTHOR>Dale Hattis</AUTHOR><AUTHOR>Prerna Banati</AUTHOR><AUTHOR>Robert Goble</AUTHOR></AUTHORS><YEAR>1999</YEAR><TITLE>Distribution of Individual Susceptibility among Humans for Toxic Effects: How Much Protection Does the Traditional Tenfold Factor Provide and for What Fraction of Which Kinds of Chemicals and Effects?</TITLE><SECONDARY_TITLE>Annals New York Academy of Sciences</SECONDARY_TITLE><VOLUME>895</VOLUME><PAGES>286-316</PAGES></MDL></Cite></EndNote>�Hattis, D., P. Banati, et al. (1999). "Distribution of Individual Susceptibility among Humans for Toxic Effects: How Much Protection Does the Traditional Tenfold Factor Provide and for What Fraction of Which Kinds of Chemicals and Effects?" Annals New York Academy of Sciences 895: 286-316.�


�  This is consistent with the findings of previous analyses where (N-1) was found to approximate 1/variance as an appropriate weight (Ibid).


� Fold Values calculated using the formula [10^ (log GSD)] ^ (Z95-Z50); Z95-Z50=[1.645-0] =1.645


10 A caveat for this observation is that all source papers did not provide individual data that allowed estimation of Log(GSD)s for all three types of Michaelis-Menten parameters.  Thus the comparison of overall variances for the parameters suffers from bringing together estimates of variability from different groups of data sets for the different parameters.


� All % rounded to the nearest whole number.  Totals may not equal 100% due to rounding.


* See section 3.4 for a discussion of calculation methods for pooled Log(GSD)s.


a This is the ratio of the activity value of the 95th percentile individual to the 50th percentile individual if the central estimate of the Pooled Log(GSD) in the fifth column were the accurate summary representation of true lognormal population variability.  If it were perfectly predictive of in vivo variability, it would correspond to the data derived uncertainty factor that might be recommended under the IPCS procedure for determining a data derived uncertainty factor.


a This is the ratio of the activity value of the 95th percentile individual to the 50th percentile individual if the central estimate of the Pooled Log(GSD) in the fifth column were the accurate summary representation of true lognormal population variability.  If it were perfectly predictive of in vivo variability, it would correspond to the data derived uncertainty factor that might be recommended under the IPCS procedure for determining a data derived uncertainty factor.


a This is the ratio of the activity value of the 95th percentile individual to the 50th percentile individual if the central estimate of the Pooled Log(GSD) in the fifth column were the accurate summary representation of true lognormal population variability.  If it were perfectly predictive of in vivo variability, it would correspond to the data derived uncertainty factor that might be recommended under the IPCS procedure for determining a data derived uncertainty factor.
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		Sample Number		Individual Data		R Correction		Estimator Used in Section 2		AB

		5		-0.057624615		-0.0013245152		-1.02E-01		-0.14665965						ln GSD				log GSD

		6		-0.048421717		-0.0051593425		-9.22E-02		-0.13732799						0.7		2.0137527075		0.3040061373

		7		-0.044172974		-0.0060362393		-8.19E-02		-0.12797189

		8		-0.033455235		-0.002186591		-6.87E-02		-0.11587367

		9		-0.032899994		-0.0056687207		-6.50E-02		-0.11252338

		10		-0.027852392		-0.0003382553		-5.28E-02		-0.1014129

		11		-0.027845095		-0.0033872662		-5.07E-02		-0.09948919

		12		-0.020783558		0.0003419453		-4.19E-02		-0.09142258

		13		-0.019539997		-0.0022651525		-4.05E-02		-0.09020292

		14		-0.019342447		-0.0015241002		-3.60E-02		-0.08605281

		15		-0.017899441		-0.0018862311		-3.30E-02		-0.08335275

		16		-0.015936551		0.0007283066		-2.71E-02		-0.07796778

		17		-0.01188206		0.0008359746		-2.42E-02		-0.07533788

		18		-0.013805804		0.0014525816		-2.10E-02		-0.07241226

		19		-0.009437283		0.0011893035		-1.90E-02		-0.0705513

		20		-0.014089265		-0.001494354		-1.97E-02		-0.0712721

		21		-0.010142479		0.0015892256		-1.44E-02		-0.06636759

		22		-0.014027607		-0.0029607062		-1.75E-02		-0.06922221

		23		-0.010023891		0.0010180479		-1.14E-02		-0.06365994

		24		-0.014246716		-0.0026808524		-1.38E-02		-0.06587536

		25		-0.007979724		0.002721974		-6.34E-03		-0.05907897

		26		-0.010351675		0.0007536953		-7.06E-03		-0.05973488

		27		-0.009258058		0.0002132964		-6.29E-03		-0.05903651

		28		-0.008490935		0.0014136023		-3.68E-03		-0.05666441

		29		-0.007467181		-0.000421612		-4.48E-03		-0.05738897

		30		-0.005748122		0.0025704224		-2.26E-05		-0.05334229

		31		-0.008511772		0.0016017115		1.54E-05		-0.0533078

		32		-0.006552398		0.0010495495		4.60E-04		-0.05290417

		33		-0.007335136		0.0014160039		1.87E-03		-0.0516257

		34		-0.008246045		0.0026842132		4.22E-03		-0.04948602

		35		-0.005754636		0.0027964138		5.27E-03		-0.04853996

		36		-0.005695159		0.0038725248		7.33E-03		-0.04666499

		37		-0.00521193		0.0031857513		7.42E-03		-0.04658551

		38		-0.006018752		0.0026619974		7.65E-03		-0.04637345

		39		-0.007134842		0.0001472731		5.66E-03		-0.04818086

		40		-0.007949443		0.0003156676		6.60E-03		-0.04733183

		41		-0.007518685		0.0027933725		1.00E-02		-0.04419856

		42		-0.005376344		0.0008345659		8.59E-03		-0.04552535

		43		-0.004820298		0.0036887379		1.24E-02		-0.04206133

		44		-0.005920376		0.0038070224		1.32E-02		-0.04135412

		45		-0.004650509		0.003098902		1.30E-02		-0.04149305

		46		-0.004346413		0.0048176716		1.55E-02		-0.03922375

		47		-0.004891781		0.0013132363		1.23E-02		-0.04219533

		48		-0.004480554		0.0026937644		1.43E-02		-0.04029868

		49		-0.005129416		0.0014356673		1.35E-02		-0.04105654

		50		-0.002242159		0.0032271831		1.60E-02		-0.03877987

								0.7

		Sample Number		Individual Data				% Underestimation						Sample Number		% Underestimation

		5		-0.057624615		0.057624615		0.0823208786						5		8.2%

		6		-0.048421717		0.048421717		0.0691738814						6		6.9%

		7		-0.044172974		0.044172974		0.0631042486						7		6.3%

		8		-0.033455235		0.033455235		0.0477931929						8		4.8%

		9		-0.032899994		0.032899994		0.0469999914						9		4.7%

		10		-0.027852392		0.027852392		0.0397891314						10		4.0%

		11		-0.027845095		0.027845095		0.0397787071						11		4.0%

		12		-0.020783558		0.020783558		0.0296907971						12		3.0%

		13		-0.019539997		0.019539997		0.0279142814						13		2.8%

		14		-0.019342447		0.019342447		0.0276320671						14		2.8%

		15		-0.017899441		0.017899441		0.02557063						15		2.6%

		16		-0.015936551		0.015936551		0.0227665014						16		2.3%

		17		-0.01188206		0.01188206		0.0169743714		average 18-22				17		1.7%

		18		-0.013805804		0.013805804		0.0197225771		0.0175721251				18		2.0%

		19		-0.009437283		0.009437283		0.0134818329						19		1.3%

		20		-0.014089265		0.014089265		0.0201275214						20		2.0%

		21		-0.010142479		0.010142479		0.0144892557						21		1.4%

		22		-0.014027607		0.014027607		0.0200394386						22		2.0%

		23		-0.010023891		0.010023891		0.0143198443						23		1.4%

		24		-0.014246716		0.014246716		0.0203524514						24		2.0%

		25		-0.007979724		0.007979724		0.0113996057						25		1.1%

		26		-0.010351675		0.010351675		0.0147881071						26		1.5%

		27		-0.009258058		0.009258058		0.0132257971						27		1.3%

		28		-0.008490935		0.008490935		0.0121299071						28		1.2%

		29		-0.007467181		0.007467181		0.0106674014						29		1.1%

		30		-0.005748122		0.005748122		0.0082116029						30		0.8%

		31		-0.008511772		0.008511772		0.0121596743						31		1.2%

		32		-0.006552398		0.006552398		0.0093605686						32		0.9%

		33		-0.007335136		0.007335136		0.0104787657						33		1.0%

		34		-0.008246045		0.008246045		0.0117800643						34		1.2%

		35		-0.005754636		0.005754636		0.0082209086						35		0.8%

		36		-0.005695159		0.005695159		0.0081359414						36		0.8%

		37		-0.00521193		0.00521193		0.0074456143		average 38-42				37		0.7%

		38		-0.006018752		0.006018752		0.0085982171		0.0097137331				38		0.9%

		39		-0.007134842		0.007134842		0.0101926314						39		1.0%

		40		-0.007949443		0.007949443		0.0113563471						40		1.1%

		41		-0.007518685		0.007518685		0.0107409786						41		1.1%

		42		-0.005376344		0.005376344		0.0076804914						42		0.8%

		43		-0.004820298		0.004820298		0.00688614						43		0.7%

		44		-0.005920376		0.005920376		0.00845768						44		0.8%

		45		-0.004650509		0.004650509		0.0066435843						45		0.7%

		46		-0.004346413		0.004346413		0.0062091614						46		0.6%

		47		-0.004891781		0.004891781		0.0069882586						47		0.7%

		48		-0.004480554		0.004480554		0.0064007914						48		0.6%

		49		-0.005129416		0.005129416		0.0073277371						49		0.7%

		50		-0.002242159		0.002242159		0.0032030843						50		0.3%
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